FEB 24, 2020 6:01 AM PST

Nanoparticles provide momentum for better diagnostic imaging

WRITTEN BY: Tara Fernandez

Photoacoustic imaging is an emerging tool with a vast array of biomedical applications ranging from the detection of brain lesions to imaging early signs of breast cancer. This technique leverages the imaging capacities of both light excitation and ultrasound wave detection to enable noninvasive, high-resolution imaging of tissue and organ systems within the body.

This translates to a physician being empowered with the ability to monitor, in real-time, oxygen saturation in the blood, the distribution of specific molecular biomarkers in a tumor or how a drug is being absorbed in the body of a patient after injection.

How does photoacoustic imaging work? First, pulsating laser light is applied to the part of the body to be imaged. This light is absorbed by the tissue, causing acoustic waves to be generated. These are then detected to image select biological processes occurring several centimeters beneath the surface of the skin. Contrast agents introduced systemically can drastically improve the resolution and specificity of the images captured in the area of interest.

A recent study published in WIREs Nanomedicine and Nanobiotechnology describes advancements and challenges associated with the use of different photoacoustic imaging contrast agents for medical and research applications.

Authors and imaging experts Paul Kumar Upputuri and Manojit Pramanik from the School of Chemical and Biomedical Engineering at Singapore’s Nanyang Technological University provided their insights on trends in the field. 

To harness the full potential of photoacoustic imaging as a medical diagnostic platform, the clear resolution of the underlying tissue architecture is paramount. Improving this resolution is a major focus for scientists who are hoping to establish photoacoustic imaging as a widely-used diagnostic technique.

This is where nanoparticles can help. Researchers and diagnostic imagers currently have access to a toolbox of nanoparticle contrast agents including carbon nanotubes, bismuth selenide nanoplates and silver nanostructures. While such nanoparticles may possess excellent optical properties, administering them into the bloodstream of patients is not always feasible.

The next phase in the evolution of this technology will see the development of more biocompatible and biodegradable contrast nanoagents, with better safety profiles for routine internal use.

“Recent progress in the field of biodegradable and metabolizable nanoparticles with potential use in clinical applications makes us hopeful that soon these nanoagents will be traveling inside our body to reveal more than what we can see at present,” says Pramanik.


 

 

Sources: Advanced Science News, WIREs Nanomedicine and Nanobiotechnology.

 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
OCT 18, 2019
Clinical & Molecular DX
OCT 18, 2019
AcroMetrix BCR-ABL External Molecular Panel: An Accurate Testing Method for Chronic Myeloid Leukemia
To support the validation and verification of new assays in oncology testing, Thermo Fisher Scientific with AcroMetrix control products provides innov...
NOV 20, 2019
Clinical & Molecular DX
NOV 20, 2019
New diagnostic technology seeks out cancer DNA in blood
For many cancers, early detection has a tremendous impact on patient outcomes. Yet, sadly, many of the most common malignancies, like those of the stomach,...
NOV 07, 2019
Neuroscience
NOV 07, 2019
Reading, Hearing Language Connects Meaning to Same Region in the Brain
Scientists at the University of California Berkeley used improved functional MRI resolution to show that similar neural circuits in the same regions of the...
DEC 23, 2019
Technology
DEC 23, 2019
Can Artifical Intelligence Detect Leukemia?
Artificial intelligence has always been a hot topic of discussion in the medical sciences with a whirlwind of applications. However, know the latest curios...
JAN 07, 2020
Clinical & Molecular DX
JAN 07, 2020
Kiss and tell: new test for kissing bug disease
Here’s one Latin lover that you do not want to get kissed by: triatomines, or “kissing bugs”. Known locally as pitos or chipos, these ins...
FEB 26, 2020
Clinical & Molecular DX
FEB 26, 2020
Is your kid's stomach ache from appendicitis? Probably not.
Complaints about a painful belly are a common childhood lament. In such situations, the first thing that often comes to concerned parents’ minds is t...
Loading Comments...