MAY 05, 2020 6:15 AM PDT

A High Resolution Glimpse Inside the Brain

WRITTEN BY: Tara Fernandez

 

Imagine a future where we could “see” inside the human brain at stunning high resolution, detecting the earliest signs of tumors or neurodegenerative disease. While this diagnostic technology is still a way off, researchers are a step closer, with a new 3-dimensional (3D) imaging technique that provides a window into the anatomical structures of the brain at unprecedented clarity.

The 3D observation and analysis of organ systems has been common practice in biomedical research for over 100 years, and continues to bridge our classical knowledge of anatomy with today’s systems biology. Optical imaging techniques often combine the use of glowing fluorescent tags, which enable researchers to view these internal structures microscopically. A stumbling block to this technique, however, is the fact that tissues are opaque — masking the fluorescent signal and diminishing the quality of the images produced. Innovative tissue-clearing chemistry aims to circumvent this problem, revealing the previously-hidden intricate architecture of anatomical structures.

 

 

Imaging scientists at the RIKEN Center for Biosystems Dynamics Research have developed a novel technique for imaging internal structures from specific organs to entire organisms. By first immersing biological samples in a special tissue-clearing gel, followed by incubations with a mixture of tissue dyes and fluorescently-labeled antibodies. This helps them to identify specific cell subpopulations and intricate tissue structures within organs. The scientists validated their new protocol using brains isolated from mice and marmosets.

The researchers reported their findings in Nature Communications, showcasing the unprecedented capabilities of their newly-developed technique. 3D renderings of scanned images from the brains of the two species revealed never-before-seen similarities in their neural vasculatures. On top of that, the team demonstrated an unprecedented method of labeling multiple molecular targets in the mouse brain simultaneously.

The technique was also applied to image a whole organism (an infant marmoset) as well as a small sample of a human brain, showcasing the potential for it to be used as a research or perhaps even a diagnostic tool in the future.

 


Source: Nature Communications, Science.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
NOV 25, 2019
Clinical & Molecular DX
NOV 25, 2019
eRapid: molecular diagnostic power in the palm of your hand
We've heard lofty biotech promises in the news of being able to diagnose diseases from a single drop of blood. Yet, diag ...
NOV 26, 2019
Immunology
NOV 26, 2019
The Immune System's Hand in Toxic Shock
While rare, toxic shock is a dangerous condition that acts fast and can be fatal. A new study identified a new target fo ...
DEC 04, 2019
Immunology
DEC 04, 2019
Predicting Death with Clinical Immune Indicators
Immune and inflammation status could help doctors predict which individuals are most at-risk for death. Results from a n ...
MAR 28, 2020
Drug Discovery & Development
MAR 28, 2020
FDA Approves 5-Minute Coronavirus Test
In recent weeks, the US has struggled to supply enough tests to detect the coronavirus. Now, however, this may change th ...
MAR 30, 2020
Clinical & Molecular DX
MAR 30, 2020
Imaging Platform to Aid in Diagnosis of COVID-19
In the exponential growth of a rapidly spreading infectious disease, healthcare systems become overwhelmed, which can ha ...
MAY 14, 2020
Clinical & Molecular DX
MAY 14, 2020
New Tech Has Its AI on Brain Tumors
  A collaboration across 29 research and healthcare agencies is putting together the world’s largest brain tu ...
Loading Comments...