MAY 21, 2020 6:40 AM PDT

Fidget Spinner Diagnoses Infections

WRITTEN BY: Tara Fernandez

The fidget spinner toy craze took the world by storm — a small, boomerang-shaped gadget that rotates hypnotically around a ball bearing with a flick of the fingers. South Korean researchers have used this addictive toy as inspiration for a new point of care diagnostic device for detecting infections.

Bacterial pathogens cause an enormous medical and economic burden globally — a problem worsened by antibiotic resistance and diagnostic challenges. For many in developing countries, accessing microbiological testing labs is not an option. Consequently, millions die due to treatable infections year after year. The problem is just as prevalent closer to home. In the United States, close to 3 million infections and 35,000 deaths occur annually as a result of antibiotic-resistant pathogens.

The race to find simple, affordable and reliable diagnostic technologies has seen scientists searching outside the box for answers. Researchers at the Center for Soft and Living Matter, within the Institute for Basic Science in South Korea recently reported a new invention, called the diagnostic fidget spinner (Dx-FS): a pocket-sized device that uses centrifugal forces and fluid dynamics to warn the user of the presence of bacteria in a small volume of biological fluid. The research was published in Nature Biomedical Engineering

 

 

“Though the centrifugal force serves as an “engine” of the device, the force is felt more strongly in the outer path as it acts outwardly away from the center of rotation. The imbalanced impact of the centrifugal force keeps some of the sample left in the membrane,” said Cho Yoon-Kyoung, corresponding author of the study. 

“Therefore, one or two spins were enough to filter 1 mL of sample despite large variation in the spin speed among different operators with different hand power,” Cho added.

The scientists describe a novel fluid-assisted separation technology which, with a couple of spins with a finger, forces fluid flow across a membrane and concentrates bacteria providing diagnostic answers in just under an hour. This is a far cry from complicated bacterial culture techniques commonly used in medical diagnostics, which can take days to weeks for patients to receive their reports.

A validation experiment using urine samples from patients suspected of having urinary tract infections (UTIs) highlighted Dx-FS’ potential to revolutionize how infections are approached clinically. Not only did the diagnostic tool provide results comparable to gold-standard culture methods, but the testing revealed that nearly 60 percent of UTIs were either over- or under-treated with antibiotics — an outcome which could be completely avoided with better diagnostic measures.

 

Sources: Nature Biomedical Engineering, Technology Networks


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
NOV 27, 2020
Clinical & Molecular DX
From Months to Hours - Digital Tools Accelerate Dermatological Diagnoses
NOV 27, 2020
From Months to Hours - Digital Tools Accelerate Dermatological Diagnoses
Getting that nasty rash tested isn’t always a straightforward process. Dermatologists have notoriously long waitli ...
DEC 03, 2020
Neuroscience
Scientists Invent Noninvasive Microscope to Observe Neurons
DEC 03, 2020
Scientists Invent Noninvasive Microscope to Observe Neurons
To obtain high-resolution images of the brain, researchers usually need to reduce the thickness of the skull or cut into ...
DEC 08, 2020
Genetics & Genomics
Advancing Genetic Sequencing with Better Computational Tools
DEC 08, 2020
Advancing Genetic Sequencing with Better Computational Tools
The many advances that have propelled the field of genetics forward have taken a tremendous amount of work in different ...
DEC 30, 2020
Clinical & Molecular DX
Of Mice and Men: Deep Learning Transforms Diagnostics
DEC 30, 2020
Of Mice and Men: Deep Learning Transforms Diagnostics
Medical imaging technologies enable physicians to take a peek under the hood, capturing snapshots of the internal organs ...
JAN 27, 2021
Clinical & Molecular DX
No Pain, All the Diagnostic Gain
JAN 27, 2021
No Pain, All the Diagnostic Gain
A recent study published in Nature Biomedical Engineering describes new microneedle patch technology that takes the &ldq ...
MAR 25, 2021
Clinical & Molecular DX
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
MAR 25, 2021
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
Doppler radars are used by cops to catch speeding drivers, in spacecraft navigation, and for forecasting the weather. No ...
Loading Comments...