JUN 09, 2020 6:30 AM PDT

The Key to Unlocking Next Generation Wearable Biosensors Is Under the Sea

WRITTEN BY: Tara Fernandez

Wearable biosensors are the latest trend in health and diagnostic technologies — keeping track of everything from our daily steps to highs and lows in insulin levels. As health sensors evolve to become increasingly sensitive and functional, they have to overcome one fundamental sticky problem: staying put.

Designing wearable devices that withstand the rigors of daily life has challenged scientists for decades. Patches need to be comfortable, discreet, and not get in the way of daily activities. On top of that, they must adhere securely to both wet and dry skin and not stick so aggressively that they are painful to remove.

Inspired by suction cups on octopus tentacles, a team of South Korean researchers has made a breakthrough with a graphene-based adhesive biosensor. Led by scientists Changhyun Pang and Changsoon Choi, their report in ACS Applied Materials & Interfaces describes a cost-effective, water-resistant, stretchable material that can pick up a variety of biological outputs — heart rates, speech patterns, and wrist motion among others.

When it comes to powerfully sticking to objects underwater, octopus suckers are unbeatable. The adult Pacific octopus has around 300 suckers per tentacle, which can hold at least 35 pounds in weight. On top of that, suckers can smell, taste and are flexible enough to make delicate pinching movements.

The design of the newly-developed biosensor was heavily inspired by the superpowers of cephalopod suckers. The base of the material, made of elastic polyurethane and polyester, is flexible enough for comfortable daily use. To give it sensory properties, the fabric incorporates highly conductive materials including graphene oxide. Finally, after fabrication, tiny "suckers" are etched on their adhesive surface to help them stick to skin.

The team, based at South Korea’s Daegu Gyeongbuk Institute of Science and Technology (DGIST), is optimistic that their innovation can be applied not only to personal health monitoring but also for diagnostic medical applications both inside and outside the body.

 


Source: EurekAlert, ACS Applied Materials & Interfaces.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
MAR 29, 2020
Cancer
MicroRNA as a New Way to Test for Lung Cancer
MAR 29, 2020
MicroRNA as a New Way to Test for Lung Cancer
The most common, and most deadly, cancer across the world is lung cancer. If caught early, lung cancer has quite a low m ...
APR 22, 2020
Clinical & Molecular DX
Microneedle Skin Patch Collects Bodily Fluids for On-patch Diagnostic Testing
APR 22, 2020
Microneedle Skin Patch Collects Bodily Fluids for On-patch Diagnostic Testing
The collection of blood for diagnostic tests is common practice in clinical settings. However, technicians often need to ...
MAY 28, 2020
Clinical & Molecular DX
Pitcher Plants Inspire Kidney Stone Diagnostic
MAY 28, 2020
Pitcher Plants Inspire Kidney Stone Diagnostic
  Urine contains an abundance of dissolved salts and minerals such as calcium and uric acid. These can form crystal ...
JUN 09, 2020
Cell & Molecular Biology
Custom Manufacturing: Translating Research into Product
JUN 09, 2020
Custom Manufacturing: Translating Research into Product
Scientists around the world are focusing their energy and resources on translating advances made in clinical research in ...
JUL 09, 2020
Clinical & Molecular DX
Women's Hair Holds Fertility Clues
JUL 09, 2020
Women's Hair Holds Fertility Clues
A new predictive tool for measuring women’s fertility uses an unlikely biological source for answers: hair. During ...
JUL 21, 2020
Clinical & Molecular DX
A Lab on a Chip Could Save Your Life in an Emergency
JUL 21, 2020
A Lab on a Chip Could Save Your Life in an Emergency
Picture this: a hiker on a backcountry trail falls down a rocky embankment, and is left with a deep gash on the leg afte ...
Loading Comments...