NOV 02, 2015 11:41 AM PST

A Heat-Activated Cancer 'Grenade'

WRITTEN BY: Xuan Pham
In the battle against cancer, scientists may be one step closer to detonating the tumor base camp, literally.
Temperature-sensitive liposomes

The research, presented at the UK’s National Cancer Research Institute Conference, describe the engineering of nanoparticle “grenades” set to blast tumors upon heat activation.

In the current treatments of cancer, removal is still a first line of defense, followed by bursts of high-dose radiation and chemotherapy. While these treatments have dramatically changed the outcomes of many cancer prognoses, they are invasive and often cause collateral damage to the patient’s healthy cells. As such, the new goal has been to not only create highly effective anti-cancer drugs, but also to deliver it in such a way that targets only the cancer cells for destruction.

Scientists quickly realized the goal for high efficacy in cancer treatment can be achieved with nanotechnology, utilizing microscopic lipsomes to deliver the potent drugs directly to the cancer cells.

"Liposomes are small bubbles of cell membrane that act like a cellular postal service, delivering molecules to our cells. Using them to deliver cancer medicines has been a holy grail of nanomedicine. But finding ways to accurately direct the liposomes towards tumours has been a major challenge in targeted drug delivery.” - Professor Charles Swanton, chair of the 2015 NCRI Cancer Conference

The current research adds the much desired layer of specificity of the drugs, using temperature-sensitive liposomes (TSL). The TSL are uniquely modified to be leaky and explode upon landing on tumor hotspots. At 37C, the normal body temperature, the water-tight TSLs are chemically and thermally stable. However, at 42C, the “pin is effectively pulled and the drugs are released,” says Kostas Kostarelos, study author and Professor of Nanomedicine at the University of Manchester. Upon exposure to 1 hour of mild heating at 42C the team reported significant enhancement of cytotoxic activity in human melanoma cancer cells. The effects of the TSLs also carry to animal studies, showing improved survival in mice carrying tumor transplants.

If five degrees of separation is apparently sufficient to discriminate between healthy and cancer cells, then how do we raise the temperature of only the tumors and not the whole body? For tumors near the body surface, such as head, neck, and skin, a simple heating pad would do the trick. Internally located tumors would require use of a heat probe or ultrasound, which are already being used in the clinic.

The benefits of a heat-triggered TSL grenade could be multifold. First, because of the specific temperature requirement for activating the TSL, the anti-cancer drugs should only target heated cancer cells. This could mean increased efficacy of the anti-cancer drugs and more effective annihilation of the tumors. Secondly, because normal cells are not affected, this could mean significantly less collateral damages, reducing unwanted side effects for patients.

The potentials could be huge: TSLs could offer a way to achieve faster, safer, and longer-lasting remissions from cancer.  

"These studies demonstrate for the first time how they can be built to include a temperature control, which could open up a range of new treatment avenues. This is still early work but these liposomes could be an effective way of targeting treatment towards cancer cells while leaving healthy cells unharmed." - Professor Charles Swanton

Watch the video to learn more about how nanoscale liposomes work!



Sources: BBC, NCRI
 
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
SEP 12, 2020
Cardiology
Is Hyperuricemia an Indicator of Aortic Disease?
SEP 12, 2020
Is Hyperuricemia an Indicator of Aortic Disease?
Living in a culture of excess can have its benefits, but also its drawbacks. Diabetes is a common disease that is gettin ...
SEP 09, 2020
Clinical & Molecular DX
Swallow the Pill, Discover the Bugs Within
SEP 09, 2020
Swallow the Pill, Discover the Bugs Within
The 30-foot long human gastrointestinal tract consists of tissues and organs that work in concert to digest our food. Th ...
SEP 10, 2020
Clinical & Molecular DX
Microscope to Diagnose River Blindness Is a Winner
SEP 10, 2020
Microscope to Diagnose River Blindness Is a Winner
  A team of innovators from Stanford University has invented the Onchoscope: a low-cost, customizable microscope fo ...
OCT 03, 2020
Clinical & Molecular DX
Test Diagnoses Dementia While You Sleep by Estimating Your Brain Age
OCT 03, 2020
Test Diagnoses Dementia While You Sleep by Estimating Your Brain Age
Researchers at Harvard have discovered a novel diagnostic marker of dementia for identifying undiagnosed patients or tho ...
OCT 05, 2020
Cancer
Does Having an Appendectomy Increase Your Risk for Cancer?
OCT 05, 2020
Does Having an Appendectomy Increase Your Risk for Cancer?
Cancer research is more than just the study of diagnostics and novel therapies. Researchers also investigate the causes ...
NOV 15, 2020
Neuroscience
Hearing Test Can Predict Autism in Newborns
NOV 15, 2020
Hearing Test Can Predict Autism in Newborns
For some time now, researchers have been aware that children and adults with autism tend to have different sensory syste ...
Loading Comments...