SEP 14, 2020 8:00 AM PDT

Peek into the Inner Workings of the Spinal Cord

WRITTEN BY: Tara Fernandez

Scientists have established a state-of-the-art method for observing and analyzing the complex flurry of neurological activity within the spinal cord. By combining functional magnetic resonance imaging, or fMRI, with advanced computational methods, neuroscientists are now able to make sense of spinal cord signals through a completely non-invasive procedure.

The study, published in the journal Neuron, tested the new technique in 19 subjects, with the researchers particularly interested in mapping the functional architecture of the spinal cord. This unprecedented glimpse into just how elaborate this neural tissue is, even when humans are in a state of rest.

This long, fragile structure has a diameter roughly the length of a fingernail and extends from the end of the brain stem all the way to the bottom of the spine. The spinal cord is densely packed with nerves that act as a highway for messages shooting back and forth from the brain and the rest of the body.

Nawal Kinany, one of the study’s lead authors explains, "One of the main challenges about observing spinal cord function is getting rid of noise from the rest of the subject's body, like breathing, the heartbeat, or simply seeing beyond the surrounding vertebral bones." 

"We managed to decompose spontaneous spinal activity into meaningful networks, with a level of neuroanatomical detail that had never been reached before." All this with the subject just lying down in an fMRI machine for around 10 minutes. Images from the scan are then mapped through space and time to visualize spinal cord activity within the context of the subject’s anatomy.

While the system has, for now, only been validated in healthy subjects, the hope is that this technology will advance towards diagnostic tools for clinically measuring injured or dysfunctional spinal cord activity. The scientists even see this leading to the creation of personalized therapies that could take advantage of intact connections following an injury to rewire the spinal cord circuitry.

 

 

Sources: Technology Networks, Neuron.


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
JUN 16, 2020
Clinical & Molecular DX
Don't Sweat It! New Tech Monitors Health With a Single Drop of Sweat.
JUN 16, 2020
Don't Sweat It! New Tech Monitors Health With a Single Drop of Sweat.
Looking for ways to cool off and beat the summer heat? Think twice before wiping that sweat off your brow. Every drop of ...
JUL 13, 2020
Cancer
Workers in Transportation Might be More at Risk for Cancer
JUL 13, 2020
Workers in Transportation Might be More at Risk for Cancer
Road transportation workers are essential employees in any country. They represent truck, bus, taxi, and other such driv ...
JUL 22, 2020
Clinical & Molecular DX
Unmasking the Secrets of the Substantia Nigra to Diagnose Parkinson's
JUL 22, 2020
Unmasking the Secrets of the Substantia Nigra to Diagnose Parkinson's
Parkinson’s disease is a devastating condition whereby neurons in a specific region of the brain that controls mov ...
AUG 07, 2020
Cancer
Immune-Related Genes as Prognostic Biomarkers
AUG 07, 2020
Immune-Related Genes as Prognostic Biomarkers
Cancer is one of the most persistent and hardy diseases. Cancers often develop the ability to suppress the immune system ...
AUG 24, 2020
Clinical & Molecular DX
New Portable MRI Swoops Into Hospital Rooms, Gets FDA Nod
AUG 24, 2020
New Portable MRI Swoops Into Hospital Rooms, Gets FDA Nod
Magnetic resonance imaging, or MRI, is a medical imaging technique that uses powerful magnetic fields and radio waves to ...
SEP 03, 2020
Cardiology
Does Hypertension Make It Harder to Recognize Others Emotions?
SEP 03, 2020
Does Hypertension Make It Harder to Recognize Others Emotions?
Have you ever felt your blood pressure rise when you get angry or stressed? Well, this phenomenon is unique in that it l ...
Loading Comments...