NOV 11, 2015 10:12 AM PST

Diagnosing Prenatal Genetic Conditions Just Got a Little More Sensitive

WRITTEN BY: Xuan Pham
Prenatal testing has been in practice for decades, helping doctors prepare women for the births of their babies. But until non-invasive prenatal testing (NIPT) came on the market recently, some prenatal tests can be quite invasive and risky, especially for women who carry high-risk fetuses. To push NIPT technology further, a group of researchers at the University of California, San Diego School of Medicine have devised a way to expand the use of NIPT to detect smaller, subtler chromosomal abnormalities.
 
New Non-Invasive Prenatal Tests Detect Smaller Chromosomal Abnormalities

NIPT came about with the discovery of cell-free fetal DNA that’s present in the blood of the expectant mothers. By taking a blood sample from the mother, researchers could isolate DNA belonging to the baby and run a gamut of genetic tests to inform the health condition of the baby. This new platform offers many advantages over conventional methods like amniocentesis or chorionic villus sampling (CVS), which are invasive, painful, and carry a risk for miscarriage and infection. Thus far, however, NIPT has been limited to detecting large chromosomal aberrations, like whole duplication of chromosome 21 in Down Syndrome.

The research team, led by Dr. Kang Zhang, attempted to “zoom in and examine a small segment of a chromosome” by combining NIPT with semiconductor sequencing. They collected blood from 1,476 pregnant women whose ultrasounds had revealed abnormal fetal structures. The average gestational age for the pregnant women was 24 weeks. The researchers then sequenced the maternal blood using semiconductor sequencing, a form of “sequencing by synthesis” based on the release and detection of hydrogen ions. The sequencing results were validated with array comparative genomic hybridization and then compared to the conventional invasive diagnoses made for each of the women. Dr. Zhang published that this method could detect subchromosomal duplications and deletions with 94.5% sensitivity compared to the conventional methods.

While remarkable, there are several caveats to the study. First, the high sensitivity was achieved by increasing sequencing depths from 3.5 million read to 10 million reads and restricting the size of chromosomal abnormalities to greater than 1 Mb. This means that the reliability of the method is dependent on sequencing depth, which is not surprising but should be taken into consideration. Second, the researchers reported 55 false positives, of which 35 were due to maternal chromosomal abnormalities. To increase the specificity for their method, the team has to conduct additional validation tests to screen out maternal DNA contamination.

Dr. Zhang and his research team aim to improve their method to detect chromosomal abnormalities less than 1 Mb, and also at an earlier gestational age of 12 to 16 weeks. He also expressed hope that the new platform can be extended to diagnosing other conditions.

"While this study focused on cell-free DNA sequencing in pregnant women, this method could be applied more broadly to other genetic diagnoses, such as analyzing circulating tumor DNA for detection of cancer." – Dr. Kang Zhang.

As a word of caution, Dr. Zhang noted that with increased detection potential comes the increased likelihood of uncovering chromosomal aberrations of unknown clinical significance. "If our NIPT extension is put into clinical practice, great care must be taken in presenting results and providing appropriate counseling to patients," cautions Dr. Zhang. 

Watch the video to learn more about fetal DNA and NIPT!
 

Source: EurekAlert
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 26, 2019
Clinical & Molecular DX
NOV 26, 2019
Looking into the eyes of MS patients for personalized therapies
Blurred or double vision, and in extreme cases, complete vision loss are amongst the earliest symptoms of multiple sclerosis (MS). In this devastating dise...
DEC 11, 2019
Clinical & Molecular DX
DEC 11, 2019
New 3-in-1 organ in a dish set to elevate research and diagnostics
In trying to understand complex phenomena in the human body, researchers usually have to turn to oversimplified biological models. Amongst the easiest to u...
DEC 18, 2019
Clinical & Molecular DX
DEC 18, 2019
Germs don't stand a chance with new AI-powered diagnostic platform
We are steadily losing our edge in the war against infectious bacteria. A huge surge in antibiotic resistance is threatening healthcare and agricultural in...
JAN 15, 2020
Clinical & Molecular DX
JAN 15, 2020
Laser microchip picks up cancer markers in urine
A future where patients no longer need to endure expensive, painful and complicated cancer tests could soon become a reality. Researchers have developed a...
JAN 28, 2020
Clinical & Molecular DX
JAN 28, 2020
Protein complex discovered as first biomarker of PTSD
  Researchers at the Centre for Addiction and Mental Health (CAMH) and the Canadian Institutes of Health Research (CIHR) have identified a potential d...
FEB 19, 2020
Clinical & Molecular DX
FEB 19, 2020
Forget complicated scans - ovarian cancer can be detected in the blood
Results from clinical trials performed in Melbourne, Australia have revealed the diagnostic potential of a new test for ovarian cancer. Instead of using co...
Loading Comments...