DEC 14, 2020 2:00 PM PST

STR Genotyping for Human Sample Identification

SPONSORED BY: Promega

Human sample identification is an essential element of many research projects employing human cells, tissues, or mixtures. Identification may be required to track and confirm sample provenance for databasing, biobanking, or research purposes. For example, archival tumor/normal specimen pairs may be tested to confirm they are derived from the same individual. Human identification may also be used as verification of twin zygosity or parentage in research studies to improve reliability of familial information. In its most sensitive application, human identification may be used to detect mixtures in human research samples—to rule out external contamination in samples, to identify contamination due to histological procedures, to track chimerism, or to study xenografts, among other things.

DNA genotyping using short tandem repeat (STR) markers is currently the gold-standard for human sample identification. STR markers consist of short, repetitive sequence elements 3–7bp in length. Distributed widely throughout the human genome, STR markers are highly polymorphic genetic markers which may be used for both forensic and non-forensic human identification. Genotyping at STR markers can be performed using PCR with dye-labeled primers. The number of repeats for each allele in a given individual can be determined, based on the size of the amplified fragments, following electrophoretic separation on a capillary electrophoresis instrument.

There are fluorescent PCR multiplex STR kits optimized for human sample identification in research labs. These kits include several highly polymorphic STR markers plus two sex-linked markers. Lab workflows can be streamlined when all markers can be amplified in a single PCR reaction. A high number of markers allows for better discrimination between human samples, including related individuals. Used in detection of human mixtures, this system also increases the likelihood of informative alleles, unique to both contributors, that can be used to estimate their relative contributions to the sample. 

While many researchers have relied on forensic chemistries that are often intended for samples with very low DNA concentration, kits that have been optimized for 2.5–5ng DNA input specifically for the research community are desirable. The increased DNA input can improve robust detection of minor genetic contributors by reducing stochastic effects on PCR. 

The availability of benchtop capillary electrophoresis instruments paired with multiplex STR kits brings the capability of human sample identification to individual labs. The small footprint and low-to medium throughput of these instruments means that research labs can now perform their own testing without waiting for sample batching or core lab turnaround. Researchers can control the entire workflow, from amplification and electrophoresis conditions, to data analysis, with a potential for faster turnaround to support key research projects. 

Human sample identification and mixed sample analysis with STR genotyping can confirm sample provenance and identify sample contamination or chimerism in many research areas, even the most sensitive applications. To learn more about DNA genotyping using STR markers with the Spectrum Compact CE System for detection of low-level human contributors in mixed samples, download the application note: Human Sample Identification and Mixed Sample Analysis Using the GenePrint® 24 System

About the Sponsor
With a portfolio of more than 4,000 products covering the fields of genomics, protein analysis and expression, cellular analysis, drug discovery and genetic identity, Promega is a global leader in providing innovative solutions and technical support to life scientists in academic, industrial and government settings. Promega products are used by life scientists who are asking fundamental questions about biological processes as well as by scientists who are applying scientific knowledge to diagnose and treat diseases, discover new therapeutics, and use genetics and DNA testing for human identification.
You May Also Like
SEP 30, 2022
Cancer
Sedentary Lifestyle Linked to Breast Cancer Risk
SEP 30, 2022
Sedentary Lifestyle Linked to Breast Cancer Risk
Experts have recognized that active lifestyles favor lower breast cancer risk.  However, despite this long-standing ...
NOV 02, 2022
Health & Medicine
[White Paper] Optimizing Sequencing Costs in Metagenomics. How to Reduce Costs of Pathogen Detection with PaRTI-Seq™
NOV 02, 2022
[White Paper] Optimizing Sequencing Costs in Metagenomics. How to Reduce Costs of Pathogen Detection with PaRTI-Seq™
Optimizing sequencing costs in metagenomics: How to reduce costs of pathogen detection in with PaRTI-Seq™ Pathogen ...
NOV 06, 2022
Genetics & Genomics
The Lone Participant in a CRISPR Therapy Trial has Died
NOV 06, 2022
The Lone Participant in a CRISPR Therapy Trial has Died
In August of this year, a single patient was enrolled in a trial that used CRISPR to correct a genetic mutation that led ...
NOV 11, 2022
Immunology
Regenerating the Immune System to Halt Multiple Sclerosis
NOV 11, 2022
Regenerating the Immune System to Halt Multiple Sclerosis
A bone marrow or blood stem cell transplant has been an effective but risky way to treat multiple sclerosis (MS), and no ...
NOV 21, 2022
Cancer
More People Living with Metastatic Cancer
NOV 21, 2022
More People Living with Metastatic Cancer
Experts define metastatic cancer as cancer that spreads from the anatomical location where it started to a distant part ...
NOV 30, 2022
Technology
New CT Technology Detects More COVID-related Lung Damage Than Conventional CT
NOV 30, 2022
New CT Technology Detects More COVID-related Lung Damage Than Conventional CT
Now that COVID-19 has been around for some time, researchers have slowly begun to identify the myriad ways in which infe ...
Loading Comments...