MAR 02, 2021 8:00 AM PST

Splice and Dice: Zeroing in on Rare Gene Variants in Alzheimer's

WRITTEN BY: Tara Fernandez

DNA is the four-letter language that codes for genes, “paragraphs” of DNA information that carry specific instructions required to synthesize proteins. mRNA molecules read out a gene to produce one of the estimated 20,000 different proteins of the human body. 

Fascinatingly, a phenomenon called alternative splicing enables a single gene to code for multiple proteins. Here, different combinations of exons (or the portion of the gene that codes for amino acids) are cut out. As a result, the proteins translated from alternatively spliced mRNA (or splice variants) contain different amino acid sequences and consequently divergent biological functions.

Alternative splicing is a standard feature of eukaryotic genetics and serves to amplify the biodiversity of proteins that the genome can encode. In humans, for instance, it’s estimated that around 95 percent of genes with multiple exons have splice variants. 

This process is also of particular interest to researchers studying neurodegenerative and neurodevelopmental disorders. Specific splice variants are frequently found in patients diagnosed with these conditions. Now, with a helping hand from artificial intelligence, neuroscientists can finally deepen their understanding of how alternative splicing influences Alzheimer’s development and progression. The research was published in PNAS.

A team from the Korea Brain Research Institute has used a deep learning-based tool for analyzing the transcriptome—a collection of all the gene readouts present in a cell, including splice variants. This platform is called Splice-AI.

With Splice-AI, team lead Jae-Yeol Joo and colleagues uncovered 14 novel splice variants in the human PLCg1 gene. Previously, rare variants of this gene have been shown to be associated with late-onset Alzheimer’s disease. However, without the right tools, progress made into understanding their clinical relevance has been slow.

Splice-AI has helped pinpoint the precise splicing sites connected with Alzheimer’s: Exon 26 of the human PLCg1 gene. 

Speaking on the significance and future applications of this data, Joo said: “Our research will give valuable information and technique for various human diseases, and through the convergence and utilization of brain research with AI technology, which is the core of the Fourth Industrial Revolution, to understand various diseases including AD, we will be able to obtain critical information for diagnosis and treatment strategy."

 

 

Sources: PNAS, EurekAlert! 


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
DEC 01, 2020
Cardiology
The Benefits of Exercise on Adipokine Levels for Post-Menopausal Women
DEC 01, 2020
The Benefits of Exercise on Adipokine Levels for Post-Menopausal Women
The benefits of a healthy lifestyle don’t just stop when you get older. Being active has been shown to improve pos ...
DEC 14, 2020
Clinical & Molecular DX
STR Genotyping for Human Sample Identification
DEC 14, 2020
STR Genotyping for Human Sample Identification
Human sample identification is an essential element of many research projects employing human cells, tissues, or mixture ...
DEC 22, 2020
Cardiology
A New 3D Imaging Method for Atherosclerosis Analysis in Mice
DEC 22, 2020
A New 3D Imaging Method for Atherosclerosis Analysis in Mice
Imaging in research may not sound glamorous, but how else would news stories get those cool looking science photos for t ...
DEC 23, 2020
Clinical & Molecular DX
Smartphone Device Uses CRISPR to Check for COVID
DEC 23, 2020
Smartphone Device Uses CRISPR to Check for COVID
Quick, portable, and ultrasensitive—a new smartphone test for COVID-19 checks all the boxes needed to get a handle ...
FEB 02, 2021
Clinical & Molecular DX
Keeping an Eye on COVID Clusters With Rapid Sequencing
FEB 02, 2021
Keeping an Eye on COVID Clusters With Rapid Sequencing
Contact tracing is a powerful tool used by public health authorities to help slow the spread of infectious diseases such ...
MAR 25, 2021
Clinical & Molecular DX
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
MAR 25, 2021
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
Doppler radars are used by cops to catch speeding drivers, in spacecraft navigation, and for forecasting the weather. No ...
Loading Comments...