MAR 31, 2021 6:00 AM PDT

A Non-Invasive Look at Fat Distribution in the Liver

WRITTEN BY: Tara Fernandez

The build-up of fat inside the liver is a worrying sign that points to the possibility of conditions such as nonalcoholic fatty liver disease or NAFLD—one of the most common forms of liver disease. However, until now, there is no non-invasive method for assessing liver fat content. To get a definitive answer, patients have to undergo painful biopsies, putting them at the risk of complications.

“Lipid distribution in the liver provides crucial information for diagnosing fatty liver-associated liver diseases including cancer, and therefore, a non-invasive, label-free, quantitative modality is needed,” said Kyohei Okubo, a researcher who led the development of a non-invasive method for visualizing the distribution of lipids in the human liver. Okubo and the team created a system that combines near-infrared spectral imaging techniques with machine learning. The study was published in Biomedical Optics Express.

The team had already demonstrated the utility and potential of near-infrared hyperspectral imaging in another application: Imaging atherosclerotic plaques in blood vessels. Based on this success, they considered that the technology might also benefit the visualizations of fatty acids in the liver.

Okubo and colleagues validated the new technology in a mouse model. One group of mice were fed a high-fat diet, which caused a spike in fat levels in the liver. They then ran the imaging technique in these animals, alongside healthy controls fed regular diets. Actual lipid content correlated closely with readings taken using near-infrared hyperspectral imaging.

Moreover, the scientists were able to generate maps of the livers, with a gradient of colors representing the local lipid densities within the liver tissues.

The results are a ray of hope that this technique could one day be translated to a clinical setting, allowing physicians to confirm suspected fatty liver syndrome in patients without the need for painful biopsies.

“This platform is expected to offer a new strategy for the noninvasive analysis of lipid localization in the liver, which can improve the diagnosis of nonalcoholic fatty liver diseases and contribute to the better understanding of the mechanism of the pathogenesis of steatosis,” wrote the authors.

 


Sources: Biomedical Optics Express, Tokyo University of Science.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
JAN 28, 2021
Clinical & Molecular DX
A $5 Test Detects Colon Cancer Before Symptoms Appear
JAN 28, 2021
A $5 Test Detects Colon Cancer Before Symptoms Appear
Researchers at the University of Exeter have found that their new colorectal cancer diagnostic test effectively catches ...
JAN 31, 2021
Genetics & Genomics
Targeting Aneuploidy in Cancer Cells
JAN 31, 2021
Targeting Aneuploidy in Cancer Cells
Cancer is typically related to problems in cells' genomes that lead to uncontrolled cell growth, and the formation of tu ...
FEB 03, 2021
Immunology
Severely Ill COVID-19 Patients may have Longer Immunity Against the Virus
FEB 03, 2021
Severely Ill COVID-19 Patients may have Longer Immunity Against the Virus
Researchers are still studying how long a person can stay immune against COVID-19 following infection. A new study by a ...
FEB 16, 2021
Genetics & Genomics
Genetic Tests That Look for Rare, Disease-Causing Variants are Usually Wrong
FEB 16, 2021
Genetic Tests That Look for Rare, Disease-Causing Variants are Usually Wrong
While people carry mostly the same genes, there are small differences in the sequences of those genes that can have prof ...
MAR 02, 2021
Clinical & Molecular DX
Splice and Dice: Zeroing in on Rare Gene Variants in Alzheimer's
MAR 02, 2021
Splice and Dice: Zeroing in on Rare Gene Variants in Alzheimer's
DNA is the four-letter language that codes for genes, “paragraphs” of DNA information that carry specific in ...
APR 12, 2021
Microbiology
New Lyme Test Can ID The DIsease Early
APR 12, 2021
New Lyme Test Can ID The DIsease Early
Lyme disease is a disease that is caused by four main species of bacteria, including Borrelia burgdorferi, which ar ...
Loading Comments...