DEC 08, 2015 4:47 PM PST

Bleached Lipids as New Biomarkers for Sepsis?

WRITTEN BY: Xuan Pham
Sepsis is one of the most serious medical conditions that can scare even the best-trained doctors. When sepsis hits, things move quickly from bad to worse, resulting with death if diagnosis is slow and treatments are delayed. To quicken detection time and improve sepsis outcome, a team of researchers from St. Louis University (SLU) were awarded $1.78 million to develop a biomarker that will allow rapid detection of sepsis.
 
Sepsis is also known as blood poisoning.

Sepsis is a highly dangerous inflammatory reaction to infection involving the whole body. Once it strikes, sepsis can cause significant drops in blood pressure, endothelial cell damage, and systemic organ failure. Because all systems and organs are at risk of infection, the morbidity and mortality rates are high. The Center for Disease Control and Prevention estimates over 750,000 cases of sepsis per year.
 
To beat sepsis successfully is to diagnose it as early as possible. To date, there is no detection method to cue doctors of imminent sepsis. But the National Institute of Health recently awarded the Ford research team $1.78 million to develop a sepsis diagnostic tool that’s based on a new lipid biomarker.
 
The biomarker is called chlorinated lipids, referring to the “bleached” effect of these molecules. In immune cells, inflammation triggers a massive release of oxidants, one of which is cellular bleach. Invading germ cells are subsequently killed by the chlorinating, or bleaching, effects of these oxidants. However, as collateral damage, some host cells, namely lipids, are also chlorinated by the oxidants.
 
The Ford team discovered these chlorinated lipids in their lab for the first time in 2002. The molecule had never before been identified in people, but the team quickly showed that the body does indeed produce these specially marked lipids. Most crucially, they showed that chlorinated lipids only get made under conditions of infection or inflammation. Therefore, these molecules can be used as the biomarker equivalent of the “canary in the coal mine,” alerting doctors to the threat of sepsis quickly and accurately.

"I hope that we find a valid biomarker. We could improve therapy for sepsis before detrimental outcomes occur." Dr. David Ford

 
To test their theory, the Ford team assembled a 3-prong approach in collaboration with two other research teams. Specifically, the research will heavily focus on how chlorinated lipids affect endothelial cells and mediate organ failure. Endothelial cells make up the circulatory lining of every tissue in the body, so understanding how chlorinated lipids alter these cells is crucial to developing an accurate biomarker for sepsis. Through additional cellular and animal studies, the teams hopes to determine whether the presence of chlorinated lipids can serve as "indicators of disease severity, organ failure, or clinical outcome for septic patients." 

"If we can catch it earlier, we are in a much better position to treat sepsis before it gets too bad. This a case where 12 or 24 hours can make a big difference." Dr. Jane McHowat, collaborator on the grant.

The teams will spend the next few years understanding chlorinated lipids in order to develop a suitable biomarker test for sepsis.

To learn more about sepsis, watch the follwing short animation.
 

Sources: Grantome, Eurekalert
 
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
APR 13, 2021
Clinical & Molecular DX
A Color-Changing "Invisible Tattoo" for Long-Term Health Monitoring
APR 13, 2021
A Color-Changing "Invisible Tattoo" for Long-Term Health Monitoring
German researchers have developed an innovative method for continuously tracking and monitoring biomarkers and drugs cir ...
MAY 11, 2021
Clinical & Molecular DX
Every Minute Counts: Opportunities for Faster Blood Culture Results
MAY 11, 2021
Every Minute Counts: Opportunities for Faster Blood Culture Results
Sepsis is one of the most significant challenges in critical care, and early diagnosis is a decisive factor in determini ...
MAY 20, 2021
Clinical & Molecular DX
Ovarian Cancer Screening More Beneficial for Early Cancer Detection
MAY 20, 2021
Ovarian Cancer Screening More Beneficial for Early Cancer Detection
A UK-based research study has shown that while ovarian cancer screening is beneficial for detecting cancers earlier, it ...
JUN 22, 2021
Clinical & Molecular DX
See the Nasties on Your Skin with Your Smartphone
JUN 22, 2021
See the Nasties on Your Skin with Your Smartphone
The skin is home to around 1.5 trillion bacteria, which together with fungi and viruses, make up the skin microbiota. Th ...
SEP 14, 2021
Clinical & Molecular DX
HIV Self-Test App Proves Promising
SEP 14, 2021
HIV Self-Test App Proves Promising
A new app allows users to self-test for HIV, which has proven to help positive patients get access to medical care and c ...
SEP 14, 2021
Health & Medicine
The Magnitude of Cardiovascular Disease- New Insights and Ways Forward
SEP 14, 2021
The Magnitude of Cardiovascular Disease- New Insights and Ways Forward
Among healthcare professionals, it is common knowledge that cardiovascular disease is the leading cause of death in the ...
Loading Comments...