JAN 07, 2016 10:45 AM PST

Science Transforms Skin Cells into Insulin-Producing Beta Cells

WRITTEN BY: Xuan Pham
Diabetes and translational medicine research received a huge breakthrough yesterday, as scientists announced that they can now produce insulin-producing pancreatic cells from human skin cells.
Beta-like cells transplanted into mice protect against diabetes.
The study, published in Nature Communications  by a team from the Gladstone Institutes and the University of California, San Francisco (UCSF), used a new technique to reprogram human skin cells (fibroblasts) into functional pancreatic beta-like cells. These converted cells act like natural beta cells in the pancreas, producing insulin in response to glucose levels. Even more impressive, when the reprogrammed cells were transplanted into mice, researchers found that the mice were protected from diabetes.

Our results demonstrate for the first time that human adult skin cells can be used to efficiently and rapidly generate functional pancreatic cells that behave similar to human beta cells. This finding opens up the opportunity for the analysis of patient-specific pancreatic beta cell properties and the optimization of cell therapy approaches. – Matthias Hebrok, PhD, director of the Diabetes Center at UCSF and a co-senior author on the study.

To get human skin cells to become pancreatic beta-like cells, the researchers used a cell lineage conversion method called Cell-Activation and Signaling-Directed (CASD) strategy. Effectively, they treated the skin cells with a combination of genetic and pharmaceutical agents to transform the cells into early developmental cells called endoderm progenitor cells. These cells have the potential to mature into a range of cells that make up different types of organs, including the pancreas.

In the next steps, the researchers coaxed the early progenitor cells into pancreatic precursor cells, and then specifically into pancreatic beta-like cells. When these beta cells were transplanted into mouse models, they secreted insulin in response to glucose stimulation and effectively protected the mice from developing diabetes.

This study represents the first successful creation of human insulin-producing pancreatic beta cells using a direct cellular reprogramming method. The final step was the most unique--and the most difficult--as molecules had not previously been identified that could take reprogrammed cells the final step to functional pancreatic cells in a dish. – Saiyong Zhu, PhD, first author and postdoctoral researcher at the Gladstone Institute of Cardiovascular Disease.

The results of this study made a great splash in diabetes research, where previous attempts at reprogramming other human embryonic stem cells into pancreatic cells proved to be too challenging. In addition to being more simple and robust, the current CASD method is faster at producing pancreatic beta cells because the reprogrammed cells don’t have to be taken all the way back to a pluripotent stem cell state. They also have greater expansion potential without compromising the new differentiated identities, a characteristic not achieved with other methods.

Diabetes affects nearly over 29 million Americans, and is the 7th leading cause of death in the United States (2010 data). This breakthrough research offers fresh insight into the basic understanding of pancreatic cell biology, and potentially a new way of bringing personalized cell therapy to those affected with this chronic condition.

Here's an animation of how cellular reprogramming works:
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
MAY 14, 2018
Clinical & Molecular DX
MAY 14, 2018
Early Differences Between Benign and Malignant Tumors
Physicians are in need of a dependable diagnostic approach for distinguishing between benign and malignant tumors early-on. Once doctors can rule out that ...
JUN 20, 2018
Genetics & Genomics
JUN 20, 2018
The Cause of a Rare Neurological Disease is Identified
In a recent study, scientists sequenced the genome to find the mutation behind a disorder that causes blindness and paralysis....
JUN 29, 2018
Clinical & Molecular DX
JUN 29, 2018
TRAF7 Mutation Responsible for Mysterious Disorder
A multisystem developmental disorder with specific symptoms shared by seven patients had gone unexplained, but a new genetic sequencing study may provide a...
JUL 03, 2018
Clinical & Molecular DX
JUL 03, 2018
Blood Test Deciphers Your Internal Rhythm
A personalized reading of your circadian rhythm could help scientists prescribe the exact time of day that drug treatments will be the most effective. A ne...
JUL 13, 2018
Genetics & Genomics
JUL 13, 2018
Detecting Leukemia Before it Starts Growing
Researchers have found ways to identify people who may develop an aggressive type of blood cancer while they are still healthy....
AUG 08, 2018
Microbiology
AUG 08, 2018
Use of Probiotics Linked to Severe Bloating, Brain Fog
Gut bacteria can have a powerful effect on brain function....
Loading Comments...