FEB 21, 2016 08:25 AM PST

How the "Toxo" Parasite Sneaks into the Brain

WRITTEN BY: Xuan Pham

A staggering 30-50% of the world’s population is estimated to be infected with the parasite Toxoplasma gondii. This parasite is known to invade the brain and affect behaviors, but until recently, researchers had no idea how the organism crossed the blood-brain barrier. Using a powerful multi-photon imaging technique, researchers record for the first time how “Toxo” hijacks into the brain by way of endothelial cells.
 
Toxoplasma gondii, also known colloquially as “Toxo,” can infect virtually any warm-blooded animal. However, the parasite can only undergo sexual reproduction in domesticated cats, and so most people know Toxo as the disease that humans can get from changing and accidentally ingesting contaminated cat litter.
 
Toxoplasmosis, the disease caused by Toxo, can be life threatening for people with compromised immune systems, such as infants, cancer patients, or HIV/AIDS patients. In addition, pregnant women can transmit the parasite to their unborn baby. Toxo invasion of the brain has been linked to adverse behavioral changes, though no one really knew how the parasite sneaked across the protective barrier in the brain.
 
"Crossing the blood-brain barrier is a rare event in part because this structure is designed to protect the brain from pathogens," said Christopher Hunter, senior study author and the Mindy Halikman Heyer President's Distinguished Professor at Penn Vet. "And yet it happens and we have now been able to visualize these events. It's something that no one had seen before."
 
Using innovative imaging techniques with the multi-photo microscope, the team at Penn filmed exactly how Toxo invades the brain. The team used mice engineered to have green fluorescent endothelial cells, which make up the lining of blood vessels. They then infected these mice with a modified form of Toxo that glows red.
 
The video shows how Toxo squeezes its way in through the endothelial cells. And after two weeks, the researchers saw Toxo bursting out of infected endothelial cells and invade into the brain tissues next to the green cells.
 
The team also performed subsequent experiments, which showed that Toxo invasion of the blood-brain barrier happens independent of other carrier cells, dispelling the so-called Trojan horse hypothesis.
 
Another interesting finding was the surprising number of Toxo parasites that existed as free floaters in the blood. They found that free parasites in the mouse blood made up about a third of the total parasite load. But the good news is that this parasite load in the blood was gone in about 10 days time, suggesting a transient nature.
 
"From a treatment perspective," Hunter said, "that means if a pregnant woman gets infected for the first time, there is a fairly short period of time when the parasite can cross the placenta and affect the fetus. That tells us that targeting these stages in the blood during this narrow window could be effective at preventing congenital transmission."
 
Now that scientists know how Toxo invades the brain, they have better targets for treating and preventing the parasite infection. This mode of action could also give scientists fresh insight as to how Toxo influences human behaviors, and even cause psychiatric diseases like schizophrenia as some research have suggested. The mechanisms behind Toxo’s invasion may also illuminate how other pathogens breach our defense to the brain.
 
Additional sources: Nature MicrobiologyEurekAlert!
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
MAY 05, 2018
Cardiology
MAY 05, 2018
When Low-Risk People Still Get Atherosclerosis
For people with blood pressure, cholesterol, and age associated with a low to intermediate level of risk for heart disease, scientists wouldn’t expec...
MAY 09, 2018
Clinical & Molecular DX
MAY 09, 2018
New "MRI Glove" for Bone and Joint Visualization
The newest in MRI technology literally fits like a glove. NYU School of Medicine scientists have designed an MRI glove that, for the first time, captures c...
MAY 23, 2018
Clinical & Molecular DX
MAY 23, 2018
Rapidly Screening Genes in 'Living Test Tubes'
Diagnosing rare disorders is often extremely challenging. Now scientists have developed a new tool for that purpose....
JUN 16, 2018
Clinical & Molecular DX
JUN 16, 2018
Nanoparticles Deliver "Theranostics" for Cancer Patients
New technology combing therapeutic agents and diagnostics (theranostics) can be used to deliver drugs to cancer cells. From the Moscow Institute of Physics...
JUN 19, 2018
Clinical & Molecular DX
JUN 19, 2018
Three-Dimensional Diagnosis of Osteoarthritis
There is a new way to diagnose arthritis and watch its progression slowly over time to determine the best route of treatment. From the University of Cambri...
JUN 30, 2018
Immunology
JUN 30, 2018
CD4 T Cells Responsible for Inflammatory Bowel Disease
A specific subset of immune cells could be targeted to better treat inflammatory bowel disease (IBD). A new University of Alabama at Birmingham study point...
Loading Comments...