APR 17, 2016 7:29 AM PDT

E-Skin: The Stick-On Tattoo of the Future?

WRITTEN BY: Xuan Pham
It looks like a stick-on tattoo of the future, and this laminated version can turn your body into a walking electronic display. Dubbed the “e-skin,” this newest form of wearable technology is ultra-thin and has micro-electronic components that light up in different colors as it is attached to the body. Aside from the unlimited recreational potential of this technology, its developers are first tailoring it for use in diagnostics as oxygen sensors during surgery.
 
E-skin can monitor body's oxygen level
Researchers from University of Tokyo are the masterminds behind this ultra-thin, flexible, and surprisingly durable technology. The film is constructed out of layers of silicon oxynitrite and parylene, to which they’ve embedded polymer light emitting diodes (PLEDs) and Organic Photodetectors (OPDs). These emit a range of colors, including red, blue, and green. Because it’s stretchable and less than 3 millimeters thick, the ‘e-skin’ can be attached to nearly any surface on the body and withstand hundreds of crumples without compromising its integrity. 
 
As each diode corresponds to a pixel when lit, researchers can arrange many diodes together to form complex and meaningful displays. The team envisions one such application to be sensing the levels of oxygen or pulse rate of a patient while in surgery.
 

But wait… isn’t there already a technology for that? Indeed, a pulse oximeter is a small device that hooks on to a patient’s finger for the expressed purpose of reading pulse rate and oxygen status. It’s widely used in hospital setting and is even commercially available for home use.
 
So how is the e-skin innovation any different? The team stresses the e-skin’s wearable feature, which makes it significantly less obtrusive and arguably more reliable. "The device unobtrusively measures the oxygen concentration of blood when laminated on a finger," said Tomoyuki Yokota, first study author. In addition, the electronic skin isn’t limited to any one appendage; rather, it can, theoretically, be attached to pretty much anywhere on the body. "Ultimately, flexible organic optical sensors may be directly laminated on organs to monitor the blood oxygen level during and after surgery," said Yokota.
 
The device also has the advantage of consuming less power and producing less heat. These properties combined with the durability of the film material, significantly increases the longevity of the device.
 
"The advent of mobile phones has changed the way we communicate," said Takao Someya, senior study author. “While these communication tools are getting smaller and smaller, they are still discrete devices that we have to carry with us.” He added, "What would the world be like if we had displays that could adhere to our bodies and even show our emotions or level of stress or unease? In addition to not having to carry a device with us at all times, they might enhance the way we interact with those around us or add a whole new dimension to how we communicate."

Additional sources: Science Daily
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
AUG 07, 2020
Cancer
Immune-Related Genes as Prognostic Biomarkers
AUG 07, 2020
Immune-Related Genes as Prognostic Biomarkers
Cancer is one of the most persistent and hardy diseases. Cancers often develop the ability to suppress the immune system ...
AUG 11, 2020
Clinical & Molecular DX
Supervillain Alert! New Tech IDs Drug-Resistant Superbugs.
AUG 11, 2020
Supervillain Alert! New Tech IDs Drug-Resistant Superbugs.
The human body is made up of around 10 trillion cells. Fascinatingly, we have 10 times more bacterial cells on our bodie ...
SEP 14, 2020
Clinical & Molecular DX
Peek into the Inner Workings of the Spinal Cord
SEP 14, 2020
Peek into the Inner Workings of the Spinal Cord
Scientists have established a state-of-the-art method for observing and analyzing the complex flurry of neurological act ...
SEP 21, 2020
Cancer
The Protein ETV1 May Act as a Biomarker for Gastrointestinal Cancer
SEP 21, 2020
The Protein ETV1 May Act as a Biomarker for Gastrointestinal Cancer
Cancer is an incredibly diverse disease. It has many types and even sub-types, with a vast range of characteristics. Som ...
OCT 05, 2020
Cancer
Does Having an Appendectomy Increase Your Risk for Cancer?
OCT 05, 2020
Does Having an Appendectomy Increase Your Risk for Cancer?
Cancer research is more than just the study of diagnostics and novel therapies. Researchers also investigate the causes ...
NOV 16, 2020
Microbiology
Using the Microbiome to Diagnose or Treat Autism
NOV 16, 2020
Using the Microbiome to Diagnose or Treat Autism
Autism is a complex disorder that has sent researchers searching for what is causing it, as the rates continue to rise. ...
Loading Comments...