APR 30, 2016 9:00 AM PDT

Scientists Use Oxygen to Sterilize Medical Implants

WRITTEN BY: Xuan Pham
Scientists harness the power of oxygen to sterilize medical devices
To avoid serious infections and complications, all medical implants must be sterilized prior to being put inside patients. But for some polymer-based implants, conventional methods of sterilization can warp and damage the product, thus lowering the efficacy of the procedure. However, researchers from the University of Bath recently discovered that simple oxygen could be used to clean the implants effectively while being cheap and environmentally friendly.
 
 Increasingly, scientists are developing medical devices made from a polymer substance known as poly(lactic-co-glycolic acid) or (PLGA). This polymer is favored among others due to its biocompatibility and biodegradability, properties that minimize the toxicity associated medical devices being inserted into patients. Common polymer implants include screws, pins, and stents used in surgeries. More recently, MIT researchers devised an implantable PLGA-based film that attaches and secretes anticancer drugs directly to pancreatic tumors.
 
But in order to work inside patient’s bodies, PLGA implants, as do all other medical devices, must be sterilized. Due to cost constraints, sterilization is often done after production.
 
"Maintaining sterile manufacturing facilities is extremely costly, so the ideal scenario is to sterilize the matrix post-manufacture,” explained Paul De Bank, professor in Pharmaceutics at the University of Bath, and senior study author. “Unfortunately, many sterilization techniques adversely affect the physical or chemical properties of the materials used in the scaffolds, and this can alter their overall performance.”
 
Conventional sterilization techniques include heat and gamma or electron beam radiation. But, in addition to being expensive, these methods can damage the PLGA devices, reducing their effectiveness or even rendering them completely unusable.
 
 
University of Bath researchers explored oxygen as an alternative. In particular, they applied ozone gas, obtained by passing electricity through oxygen, to the polymer. They showed short pulses of ozone gas killed spores of bacteria commonly used for the validation of sterilization techniques. Most importantly, their ozone sterilization did not affect the structural or functional integrity of the polymer devices. To demonstrate its function after sterilization, the team showed that cells were able to grow on the treated PLGA surfaces as normal.
 
The team stressed that this procedure is effective while being low-cost and environmentally friendly. They say the technique doesn’t require expensive equipment and heavy training, and produce little to no toxic waste products.

“The fact that ozone performed so well suggests it could be routinely used to sterilize not only PLGA, but a wide range of materials used in clinical implants," said De Bank. He and his team are hopeful to begin testing ozone sterilization in other polymer compounds.

Additional source: EurekAlert!
 
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
OCT 27, 2020
Clinical & Molecular DX
A Super Sensitive Alzheimer's Test Powered by Nanozymes
OCT 27, 2020
A Super Sensitive Alzheimer's Test Powered by Nanozymes
  Simple tasks are now uphill struggles, social situations aren’t fun, and the car keys are missing again. By ...
OCT 24, 2020
Clinical & Molecular DX
Software Flags Elevated Cerebral Palsy Risk in Premies
OCT 24, 2020
Software Flags Elevated Cerebral Palsy Risk in Premies
Diagnostic imaging scientists have developed a software tool for predicting the future onset of cerebral palsy in babies ...
NOV 03, 2020
Clinical & Molecular DX
"Hello? It's Me, the Coronavirus."
NOV 03, 2020
"Hello? It's Me, the Coronavirus."
Researchers at MIT have discovered an unlikely way of discerning those with COVID-19 from healthy individuals — si ...
NOV 16, 2020
Microbiology
Using the Microbiome to Diagnose or Treat Autism
NOV 16, 2020
Using the Microbiome to Diagnose or Treat Autism
Autism is a complex disorder that has sent researchers searching for what is causing it, as the rates continue to rise. ...
DEC 29, 2020
Cardiology
Does Physical Activity Help Reduce the Risk of Aneurysms?
DEC 29, 2020
Does Physical Activity Help Reduce the Risk of Aneurysms?
An active lifestyle is a proven way to prevent many types of cardiovascular diseases. The increased blood flow can preve ...
JAN 26, 2021
Genetics & Genomics
Why Only Some People With a Rare Mutation Get a Heart Condition
JAN 26, 2021
Why Only Some People With a Rare Mutation Get a Heart Condition
Scientists have found a way to explain why a heart condition called hypertrophic cardiomyopathy (HCM) can be so differen ...
Loading Comments...