MAY 14, 2016 10:51 AM PDT

Silk Protein Stabilizes Blood for the Long Haul

WRITTEN BY: Xuan Pham
When most people think of silk, they often imagine luxurious textiles in the form of clothing or accessories. But silk is emerging as an innovative biomaterial that’s being incorporated into cutting-edge science and medicine. Most recently, engineers at Tufts University devised a way to stabilize blood for months at high temperatures using this ancient material. The team says silk could transform the way blood is collected and stored for diagnostic testing.
 
Silk proteins protect blood from high heat for nearly 3 months
Silks are fibrous proteins made by silkworms and spiders. The remarkable mechanical properties of silk make this material highly versatile but difficult to replicate in synthetic form. Furthermore, natural silk is completely biocompatible, making it suitable for many medical applications, such as in gels, sponges, and films.
 
In particular, Tufts engineers were interested in the protein fibroin that’s extracted from silk. This protein provides the rigidity and strength that make silk so desirable. Fibroin has previously shown to increase the stability of some bioactive materials, like vaccines and antibiotics. Thus, the team set out to determine if silk could increase the stability of blood.
 
Diagnostic testing relies heavily on patient blood samples, which are rich in proteins, enzymes, metabolites, and other biomarkers. But blood is highly susceptible to degradation once extracted from the body. Samples must be properly refrigerated to stall the inevitable decomposition. Even with the popular method saving samples as a dried blood spot, heat and humidity can still affect the integrity of the blood sample. Furthermore, a dried blood spot does not yield sufficient material for some molecular assays.
 
“With anything like high humidity or high temperature, the proteins are not protected by any sort of coating or physical entrapment,” explained Jonathan Kluge, the paper's co-first author.
 
To test whether silk fibroin can stabilize blood from heat degradation, Tufts researchers mixed blood or plasma with a powder of purified silk fibroin. They then air-dried the mixture and stored the samples between 22 and 45 degrees Celsius (71.6 to 113 degrees Fahrenheit). These samples were rehydrated in water at various timepoints to determine the blood’s integrity.
 
"We found that biomarkers could be successfully analyzed even after storage for 84 days at temperatures up to 113 degrees F. Encapsulation of samples in silk provided better protection than the traditional approach of drying on paper, especially at these elevated temperatures which a shipment might encounter during overseas or summer transport," said Kluge.
 
While the research has a long ways to go before reaching patients and diagnostic labs, it demonstrates the huge potential for transforming how blood can be collected and stored. This is especially beneficial in rural settings where electricity for refrigeration is absent or unreliable.
 
Remarking on the incredible properties of fibroin, David Kaplan, who is the chair of biomedical engineering at Tufts, said: “It’s a simple protein, basically, and yet it’s all in the way it’s processed and used.” Kaplan’s lab has studied silk for over 20 years, and has come up with many medical innvoations involving this ancient material.
 

Additional source: Tufts University press release
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 26, 2019
Clinical & Molecular DX
NOV 26, 2019
Looking into the eyes of MS patients for personalized therapies
Blurred or double vision, and in extreme cases, complete vision loss are amongst the earliest symptoms of multiple sclerosis (MS). In this devastating dise
DEC 18, 2019
Clinical & Molecular DX
DEC 18, 2019
Germs don't stand a chance with new AI-powered diagnostic platform
We are steadily losing our edge in the war against infectious bacteria. A huge surge in antibiotic resistance is threate...
FEB 07, 2020
Clinical & Molecular DX
FEB 07, 2020
New diagnostic technology uses levitating proteins
Intrinsic biophysical properties of proteins hold valuable clues about how they function and their role in disease. Take, for example, one of the most comm
MAR 12, 2020
Clinical & Molecular DX
MAR 12, 2020
Molecular biomarker in saliva predicts childhood obesity
Epigenetic changes modify how genes are switched on and off, without altering DNA’s genetic code sequence. These epigenetic variations are reversible
MAR 23, 2020
Genetics & Genomics
MAR 23, 2020
Diagnosing Cancer by Looking for Microbial DNA in the Blood
Liquid biopsies aim to diagnose a disease with only a bit of biological fluid, usually blood.
MAR 29, 2020
Cancer
MAR 29, 2020
MicroRNA as a New Way to Test for Lung Cancer
The most common, and most deadly, cancer across the world is lung cancer. If caught early, lung cancer has quite a low mortality rate. MicroRNAs may prove to be the answer.
Loading Comments...