MAY 14, 2016 10:51 AM PDT

Silk Protein Stabilizes Blood for the Long Haul

WRITTEN BY: Xuan Pham
When most people think of silk, they often imagine luxurious textiles in the form of clothing or accessories. But silk is emerging as an innovative biomaterial that’s being incorporated into cutting-edge science and medicine. Most recently, engineers at Tufts University devised a way to stabilize blood for months at high temperatures using this ancient material. The team says silk could transform the way blood is collected and stored for diagnostic testing.
 
Silk proteins protect blood from high heat for nearly 3 months
Silks are fibrous proteins made by silkworms and spiders. The remarkable mechanical properties of silk make this material highly versatile but difficult to replicate in synthetic form. Furthermore, natural silk is completely biocompatible, making it suitable for many medical applications, such as in gels, sponges, and films.
 
In particular, Tufts engineers were interested in the protein fibroin that’s extracted from silk. This protein provides the rigidity and strength that make silk so desirable. Fibroin has previously shown to increase the stability of some bioactive materials, like vaccines and antibiotics. Thus, the team set out to determine if silk could increase the stability of blood.
 
Diagnostic testing relies heavily on patient blood samples, which are rich in proteins, enzymes, metabolites, and other biomarkers. But blood is highly susceptible to degradation once extracted from the body. Samples must be properly refrigerated to stall the inevitable decomposition. Even with the popular method saving samples as a dried blood spot, heat and humidity can still affect the integrity of the blood sample. Furthermore, a dried blood spot does not yield sufficient material for some molecular assays.
 
“With anything like high humidity or high temperature, the proteins are not protected by any sort of coating or physical entrapment,” explained Jonathan Kluge, the paper's co-first author.
 
To test whether silk fibroin can stabilize blood from heat degradation, Tufts researchers mixed blood or plasma with a powder of purified silk fibroin. They then air-dried the mixture and stored the samples between 22 and 45 degrees Celsius (71.6 to 113 degrees Fahrenheit). These samples were rehydrated in water at various timepoints to determine the blood’s integrity.
 
"We found that biomarkers could be successfully analyzed even after storage for 84 days at temperatures up to 113 degrees F. Encapsulation of samples in silk provided better protection than the traditional approach of drying on paper, especially at these elevated temperatures which a shipment might encounter during overseas or summer transport," said Kluge.
 
While the research has a long ways to go before reaching patients and diagnostic labs, it demonstrates the huge potential for transforming how blood can be collected and stored. This is especially beneficial in rural settings where electricity for refrigeration is absent or unreliable.
 
Remarking on the incredible properties of fibroin, David Kaplan, who is the chair of biomedical engineering at Tufts, said: “It’s a simple protein, basically, and yet it’s all in the way it’s processed and used.” Kaplan’s lab has studied silk for over 20 years, and has come up with many medical innvoations involving this ancient material.
 

Additional source: Tufts University press release
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
OCT 24, 2020
Clinical & Molecular DX
Software Flags Elevated Cerebral Palsy Risk in Premies
OCT 24, 2020
Software Flags Elevated Cerebral Palsy Risk in Premies
Diagnostic imaging scientists have developed a software tool for predicting the future onset of cerebral palsy in babies ...
NOV 16, 2020
Microbiology
Using the Microbiome to Diagnose or Treat Autism
NOV 16, 2020
Using the Microbiome to Diagnose or Treat Autism
Autism is a complex disorder that has sent researchers searching for what is causing it, as the rates continue to rise. ...
NOV 30, 2020
Cancer
Developing Handheld Pulse Lasers to Destroy Cancer Tissue
NOV 30, 2020
Developing Handheld Pulse Lasers to Destroy Cancer Tissue
Many take modern surgeons and surgical methods for granted. In the grand scheme of things, it wasn’t too long ago ...
JAN 22, 2021
Clinical & Molecular DX
Breast Cancer's Nasty Nine Revealed
JAN 22, 2021
Breast Cancer's Nasty Nine Revealed
Calculating an individual’s risk of developing breast cancer isn’t easy. There’s a complex interplay b ...
FEB 03, 2021
Immunology
Severely Ill COVID-19 Patients may have Longer Immunity Against the Virus
FEB 03, 2021
Severely Ill COVID-19 Patients may have Longer Immunity Against the Virus
Researchers are still studying how long a person can stay immune against COVID-19 following infection. A new study by a ...
FEB 11, 2021
Clinical & Molecular DX
Seeing if Hormone Therapy Will Work for Breast Cancer Patients
FEB 11, 2021
Seeing if Hormone Therapy Will Work for Breast Cancer Patients
Only around half of women diagnosed with breast cancer will benefit from hormonal therapy, a cancer treatment that adds, ...
Loading Comments...