MAY 16, 2016 8:45 AM PDT

Translucent Organs Improve Nanoparticle Tracking

WRITTEN BY: Xuan Pham
In recent years, more and more researchers are turning to nanoparticles for targeted delivery of drugs to select organs in the body. This technique promises to treat diseases, such as cancer, without the collateral damages to healthy cells. However, a recent study found that less than one percent of nanoparticle drug reach their intended target. To better visualize where nanoparticles really end up in the body, researchers at the University of Toronto are taking a “clear” approach – they’re making organs transparent.
 
Shrey Sindhwani, Abdullah Syed, and Warren Chan
 Current methods of visualizing drug delivery are limited. Blood vessel walls, fat cells, and other biological barriers impede how much researchers can see inside an organ. “With current techniques, you can either see the whole organ, but without really knowing the details about what’s happening inside, or you can look at a single tissue slice in detail, but you lose contextual information,” said Shrey Sindhwani, MD-PhD candidate in the Institute of Biomaterials & Biomedical Engineering (IBBME), and first study author.
 
Stanford researchers studying the brain also reached this dilemma. Last year, they overcame the obstacle by developing a technique, known as CLARITY, which makes the brain transparent in order to visualize proteins with different antibodies.
 
Building on this existing method, the Toronto team applied it to other organs and nanoparticles. “People have used this technique to make tissues transparent, but we didn’t know it if would work with nanoparticles,” said Abdullah Syed, IBBME PhD candidate, and second author of the study.
 

To make the organs transparent, the team injected mouse organs and tissues with an acrylamide hydrogel. This substance bonds proteins together, and preserves the structural integrity of the organ. Lipid molecules, which are fat cells responsible for making organs opaque, are not linked together with the hydrogel. Thus, in subsequent washing steps, the lipids are easily removed, leaving organs that are virtually clear but structurally intact.
 
Nanoparticles injected into the organ were also held in place along with the cross-linked proteins. Thus once, the organ was clear, the researchers could image the nanoparticles in detail. Reportedly, this technique allowed the team to image nanoparticles at a depth of more than one millimeter, which is 25 times deeper than existing methods. In the liver, for example, “We see the nanoparticles stay near the vessel,” said Sindhwani. “Now that we know which cells are taking which nanoparticles up, we can appropriately target or deliver drugs for that cell type.”
 
“Our technique captures both perspectives with high resolution, producing a 3D map that can be zoomed in and out, like a Google Earth for the body,” said Sindhwani.
 
The team also reports that the process of making tissues and organs transparent can be optimized by tweaking the temperature and concentration of the detergent wash. “The original technique would take about a month to clear one sample,” said Syed. “We can do 48 tissues simultaneously in about 7 days.”
 
“The advantage of this process is that we could use the technique to study multiple diseases and conditions beyond cancer,” said Warren Chan, senior study author. “Nanoparticles have many potential applications in medicine, so we hope this technique will be adapted by researchers and clinicians in a number of different fields.”

Additional sources: University of Toronto press releaseMNT
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
AUG 11, 2019
Clinical & Molecular DX
AUG 11, 2019
New Device Improves Accuracy In Lung Cancer Diagnosis
Acute respiratory distress syndrome ARDS occurs when fluid builds up in the alveoli. These tiny elastics sacs, which are responsible for gaseous exchange i...
OCT 16, 2019
Genetics & Genomics
OCT 16, 2019
A 'Molecular Clock' for Determining a Child's Age
This tool can aid in the diagnosis of developmental disorders, including autism spectrum disorder....
OCT 18, 2019
Health & Medicine
OCT 18, 2019
Are Washing Machines a Reservoir for Multidrug Resistant Pathogens?
Multidrug-resistant bacteria are frequently found in hospitals and long-term nursing facilities causing one of the largest public health concerns worldwide...
NOV 01, 2019
Chemistry & Physics
NOV 01, 2019
Cancer Therapy Agents Inspired by Solar Technology
In a recent study, a group of biomedical researchers at Michigan State University developed a new platform for tweaking light-activated dyes that can enable diagnostic imaging, image-guided s...
DEC 09, 2019
Clinical & Molecular DX
DEC 09, 2019
Astronauts help to advanced personalized medicine
Extreme temperatures and lethal levels of radiation are just some of the hazards faced by astronauts as they traverse the harsh conditions of space. Additi...
JAN 14, 2020
Clinical & Molecular DX
JAN 14, 2020
Can I eat this donut? A quick test for celiac disease.
Genetic testing revealed that our ancestors have been eating wheat, rye, spelt and barley for over 8,000 years. Today, gluten, a protein found within these...
Loading Comments...