JUL 08, 2016 6:17 AM PDT

'Good Vibrations' Turn Stem Cells into Bone Cells

WRITTEN BY: Xuan Pham
Earlier this year, scientists made history when they discovered evidence of gravitational waves. Now researchers in the United Kingdom say the same technology that detected the atomic ripples in our space can be used to turn stem cells into bones in the lab.

Nanoscale vibrations kickstart stem cells into bone cells | Image: ostinol.com 

Bones are complicated tissues in our bodies. They vary in size and shape, and even density. Thus when patients are stricken with diseases, like congenital deformities, or damage their bones by accidents, it can be exceedingly challenging for doctors to find and ‘install’ replacement parts. Even so, bone transplants are the second most common transplanted tissues, next to blood. Thus, finding alternatives to donor bone tissues is of great interest.
 
Researchers at the University of the West of Scotland (UWS) and the University of Glasgow (UG) began by observing that bones normally need some sort of physical stimulation to thrive. Just as our muscles can weaken and die from disuse, bones can erode without pressure or movement. This problem is most apparent for astronauts whose bones are weaker and more brittle from the weightlessness in space.
 
Normal movements and pressure keep bones healthy and growing – a process known as ‘bone loading.’ Thus, the team wondered whether they could stimulate stem cells with vibrations to induce the cells to turn into bone cells. Stem cells are undifferentiated progenitor cells that have the capacity to develop into many different types of tissues.
 
Indeed, the team used high frequency vibrations, called ‘nanokicking,’ to simulate bone loading. The technique turned the stem cells into bone producing cells, which can be transplanted into a site to fuse and heal the damaged bones.
 

 "The bioreactor we have designed brings together fields of research from different ends of the spectrum: stem cell research on the building blocks of our bodies, to technology used to detect the ripples in space and time caused by the collisions of massive objects. It's amazing that technology developed to look for gravitational waves has a down-to-earth application in revolutionizing bone treatments for cleaner, safer and more effective therapy,” said Matt Dalby, professor at the University of Glasgow.
 
This method of bone transplant is different than conventional methods of transplanting a bone graft, organic or artificially produced, to the recipient. Rather than a structured piece of tissues, this technique relies on cells to fuse or heal a bone wound. But it’s also reasonable to think that the newly derived bone cells could also grow on a scaffold, which can then be transplanted into a patient who may require more extensive bone reconstruction.
 
There are other benefits to transplanting bone cells. First, this technique bypasses the need for expensive and potentially harmful drugs and growth factors commonly used to induce bone growth in the lab. Second, because the stem cells can come from the patient, the subsequent transplants won’t cause rejection as is common with donor tissues. And of course, regrowing bones with a patient’s own cells relieves the burden of finding compatible donors, and eliminates the need for painful harvesting procedures.
 
The team has their eyes on the prize: They hope lab-grown bone cells can be tested in human clinical trials within 3 years, and the therapy can be available to all patients within 10 years. Ultimately, they are looking to sidestep the transplant altogether and directly stimulate the patient’s fractures to heal without surgery.

Curious about gravitational waves? Here's an explanation:

Additional source: MNT
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUL 20, 2019
Clinical & Molecular DX
JUL 20, 2019
Diagnosing Autism, The Child-Friendly Way
The term autism spectrum disorder ASD is an umbrella term for a wide range of conditions. These conditions are characterized by difficulty in social situat...
AUG 13, 2019
Health & Medicine
AUG 13, 2019
Blood-Brain Barrier Impairment and Its Role in Alzheimer's Disease
In healthy people, the blood-brain barrier (BBB), which is fromed by brain endothelial cells, strictly controls the entrance of harmful materials into...
AUG 27, 2019
Health & Medicine
AUG 27, 2019
On the bright side, optimists may live longer
Do you see the glass half empty, or half full? If your answer is full, you may be in luck: Optimistic people live 11-15% longer than pessimists, according...
SEP 14, 2019
Chemistry & Physics
SEP 14, 2019
What is Photoacoustic Imaging?
In the last decade, photoacoustic tomography has slowly emerged as a versatile, radiation-free imaging modality that bears great potentials for basic resea...
DEC 04, 2019
Clinical & Molecular DX
DEC 04, 2019
Genetic platform takes the guesswork out of catching infections
A physician is faced with 3 patients: an elderly person with a chronic cough, a child being wheeled out of surgery and a young mother with a high fever. Ho...
FEB 19, 2020
Clinical & Molecular DX
FEB 19, 2020
Forget complicated scans - ovarian cancer can be detected in the blood
Results from clinical trials performed in Melbourne, Australia have revealed the diagnostic potential of a new test for ovarian cancer. Instead of using co...
Loading Comments...