DEC 06, 2016 08:27 AM PST

Scientists Find Diabetes-Fighting Hormone in Platypus Venom

WRITTEN BY: Xuan Pham
The wonderfully adorable egg-laying mammal known as the platypus may hold the key to new treatments for type 2 diabetes in humans. In particular, the platypus’ venom contains an insulin-regulating hormone that can lower blood glucose levels.
 
Endemic to Eastern Australia, the duck-billed platypus is somewhat of an evolutionary oddity. Besides its whimsical appearance, the platypus is one in a handful of living mammals that lays eggs instead of giving live birth. In addition, the platypus has 10 sex chromosomes, as compared to our meager 2.
 
But these characteristics were not what drew researchers from the University of Adelaide and Flinders University. Instead, the scientists were interested in the platypus stomach, or lack thereof. "We knew from genome analysis that there was something weird about the platypus's metabolic control system because they basically lack a functional stomach,” said Frank Grutzer, the lead researcher.
 

Instead of a stomach, the platypus seems to secrete a gut hormone that regulates their blood glucose levels. The hormone, known as glucagon-like peptide-1 (GLP-1), is also made in humans too; however, some people don’t have enough and the hormone degrades very quickly.

But further research revealed that the platypus has another reservoir for GLP-1 – in the spurs on the heels of their hind feet. "We've discovered conflicting functions of GLP-1 in the platypus: in the gut as a regulator of blood glucose, and in venom to fend off other platypus males during breeding season. This tug of war between the different functions has resulted in dramatic changes in the GLP-1 system," said Briony Forbes, associate professor at the Flinders University's School of Medicine, and the study’s co-lead author.
 
While the human version of GLP-1 degrades in a flash, the platypus version appears to have evolved to be long-lasting – a quality that makes it highly desirable for the treatment of type 2 diabetes. "Our research team has discovered that monotremes -- our iconic platypus and echidna -- have evolved changes in the hormone GLP-1 that make it resistant to the rapid degradation normally seen in humans," said Grutzner.
 
 
"We've found that GLP-1 is degraded in monotremes by a completely different mechanism. Further analysis of the genetics of monotremes reveals that there seems to be a kind of molecular warfare going on between the function of GLP-1, which is produced in the gut but surprisingly also in their venom," Grutzner explained.

"This is an amazing example of how millions of years of evolution can shape molecules and optimize their function,” said Grutzner. "These findings have the potential to inform diabetes treatment, one of our greatest health challenges, although exactly how we can convert this finding into a treatment will need to be the subject of future research."

Additional sources: BBCUniversity of Adelaide
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUN 08, 2018
Clinical & Molecular DX
JUN 08, 2018
Early Detection of Tooth Decay from Bacterial Invasion
We all get cavities, but have we ever thought much about the biology of the process? From the Akson Russian Science Communication Association, scientists i...
JUL 10, 2018
Cardiology
JUL 10, 2018
Going Digital for Heart Disease Detection
A group based out of Scripps has utilized a new, patient-centric, mobile medical device to help diagnosis Atrial Fibrillation....
JUL 13, 2018
Genetics & Genomics
JUL 13, 2018
Detecting Leukemia Before it Starts Growing
Researchers have found ways to identify people who may develop an aggressive type of blood cancer while they are still healthy....
AUG 06, 2018
Infographics
AUG 06, 2018
What's in your blood?
Even though we only tend to focus on four key blood types, there are actually hundreds of iterations of different proteins and other components that make u...
NOV 26, 2018
Health & Medicine
NOV 26, 2018
Nontuberculous Mycobacterial Infections in Tattoos
Contracting an infection when getting a tattoo is always a major concern. Consumers should be aware of the risk of developing infections with bloodborne pa...
NOV 26, 2018
Clinical & Molecular DX
NOV 26, 2018
Yours truly, microglia
Microglia, found primarily in CNS plays a role in many disease progression, hence a review to see how it might come to be....
Loading Comments...