APR 06, 2017 11:38 AM PDT

Ultra-Thin Bionic Skin: The Next-Generation of Wearables

WRITTEN BY: Xuan Pham

At first glance, the sheet of electronic resembles a used candy wrapper rather than a sophisticated wearable device. But make no mistake, this simple-looking creation is filled with advanced circuits and sensors that make it one of the thinnest and most flexible wearable healthcare sensors ever invented.

University of Tokyo | Someya Lab

Dubbed the “e-skin,” this newest form of wearable technology is ultra-thin and has micro-electronic components that light up in different colors as it is attached to the body.

Researchers from University of Tokyo are the masterminds behind this stick-on tattoo of the future. The film is constructed out of layers of silicon oxynitrite and parylene, to which they’ve embedded polymer light emitting diodes (PLEDs) and Organic Photodetectors (OPDs). These emit a range of colors, including red, blue, and green. Because it’s stretchable and less than 3 millimeters thick, the ‘e-skin’ can be attached to nearly any surface on the body and withstand hundreds of crumples without compromising its integrity.

As each diode corresponds to a pixel when lit, researchers can arrange many diodes together to form complex and meaningful displays. The team envisions one such application to be sensing the levels of oxygen or pulse rate of a patient while in surgery.

But wait… isn’t there already a technology for that? Indeed, a pulse oximeter is a small device that hooks on to a patient’s finger for the expressed purpose of reading pulse rate and oxygen status. It’s widely used in hospital setting and is even commercially available for home use.

So how is the e-skin innovation any different? The team stresses the e-skin’s wearable feature, which makes it significantly less obtrusive and arguably more reliable. "The device unobtrusively measures the oxygen concentration of blood when laminated on a finger," said Tomoyuki Yokota, first study author. In addition, the electronic skin isn’t limited to any one appendage; rather, it can, theoretically, be attached to pretty much anywhere on the body. "Ultimately, flexible organic optical sensors may be directly laminated on organs to monitor the blood oxygen level during and after surgery," said Yokota.

The device also has the advantage of consuming less power and producing less heat. These properties combined with the durability of the film material, significantly increases the longevity of the device.

"The advent of mobile phones has changed the way we communicate," said Takao Someya, senior study author. “While these communication tools are getting smaller and smaller, they are still discrete devices that we have to carry with us.” He added, "What would the world be like if we had displays that could adhere to our bodies and even show our emotions or level of stress or unease? In addition to not having to carry a device with us at all times, they might enhance the way we interact with those around us or add a whole new dimension to how we communicate."

 

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
AUG 15, 2020
Cardiology
Following Platelets to Diagnose Myocarditis
AUG 15, 2020
Following Platelets to Diagnose Myocarditis
The heart is a sensitive thing, prone not just to metaphorical heartbreak, but genuine issues if not taken care of. Myoc ...
SEP 02, 2020
Cancer
Does Adjuvant Chemotherapy Really Help in a Rare Signet-ring Cell Carcinoma
SEP 02, 2020
Does Adjuvant Chemotherapy Really Help in a Rare Signet-ring Cell Carcinoma
For many rare diseases, there is a lack of a “standard” treatment options. This is more prevalent in diverse ...
SEP 01, 2020
Clinical & Molecular DX
Scalp Implants Monitor Epileptic Seizures
SEP 01, 2020
Scalp Implants Monitor Epileptic Seizures
Neuroscientists have developed devices that, when implanted under the scalp of individuals living with epilepsy, can mon ...
SEP 07, 2020
Cell & Molecular Biology
With Nanopores, Small Samples Detect Diseases
SEP 07, 2020
With Nanopores, Small Samples Detect Diseases
If you've ever been through a battery of tests while doctors try to find a diagnosis for an ailment, you know that many ...
OCT 14, 2020
Cancer
Using Plasma Scalpels with Chemotherapy Against Brain Cancer
OCT 14, 2020
Using Plasma Scalpels with Chemotherapy Against Brain Cancer
Cold atmospheric plasma is a relatively new technique that utilizes a tool that generates a sort of plasma scalpel, exce ...
OCT 17, 2020
Clinical & Molecular DX
Imaging Innovation Set to Ease the Pain of Osteoarthritis
OCT 17, 2020
Imaging Innovation Set to Ease the Pain of Osteoarthritis
In osteoarthritis, the joint cartilage that cushions bones begins to break down, causing debilitating pain and stiffness ...
Loading Comments...