MAY 25, 2017 11:55 AM PDT

Study Hints at the Possibility of Lunar Sperm Banks

WRITTEN BY: Xuan Pham

If you’ve ever wondered whether freeze-dried sperm can still function after being in space, you’re not alone. In fact, for scientists who are serious about space colonization, sperm viability in space is a huge concern.

Results from a recent study may alleviate some of these worries. Japanese researchers showed that healthy baby mice were born using freeze-dried sperm stored in space. Of course it doesn’t immediately translate to the viability of human sperm, but the results hint at the possibility.

Image credit: Wakayama et al. 2017, PNAS

Surviving in the near-weightless environment of space is no easy feat for cells. In space, cosmic radiation is over 100 times more potent than on Earth. This means DNA is much more susceptible to breaking and mutating. Such environments are especially hostile to the sperm and egg, which carry the genetic information to create new life.

To test the long-term effects of space on sperm, researchers stored freeze-dried mouse sperm on the International Space Station for nine months. After that period, the sperm was sent back to Earth, thawed, and used to fertilize female mice.

Surprisingly, the team found that birth rates from these well-traveled sperm were similar to “ground control” mice. The space pups developed into adulthood as normal, and were also able to procreate themselves. As such, fertility seems to be intact, at least for two generations.

But that’s not to say there were no biologic ramifications of being in space for so long. The team showed that sperm DNA did sustain damage, and these alterations likely contributed to the slight differences in the genetic code of the space pups. The team also hypothesized that the DNA damage sustained by the sperm could have been repaired by the egg after fertilization.

"If sperm samples are to be preserved for longer periods in space, then it is likely that DNA damage will increase and exceed the limit of the [egg] oocyte's capacity for repair,” said Sayaka Wakayama, the study’s lead author. "If the DNA damage occurring during long-term preservation is found to have a significant effect on offspring, we will need to develop methods to protect sperm samples against space radiation, such as an ice shield," he said.

With such promising results, Wakayama and colleagues have their eyes on a space sperm bank. It sounds kooky, but such a repository would, theoretically, preserve the seeds of life in case of unimaginable disasters on Earth.

"Underground storage on the Moon, such as in lava tubes, could be among the best places for prolonged or permanent sperm preservation because of their very low temperatures, protection from space radiation by thick bedrock layers, and complete isolation from any disasters on Earth," the scientists say.

The efforts may be moot, though, if humans can’t get to space or live in space long enough to use such resources.

Additional source: BBC

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 12, 2020
Clinical & Molecular DX
Study Shows 1 in 5 COVID Tests Are False Positives
NOV 12, 2020
Study Shows 1 in 5 COVID Tests Are False Positives
  A study published in The BMJ has brought to light that the rapid finger-prick COVID-19 test may not be quite as r ...
DEC 03, 2020
Neuroscience
Scientists Invent Noninvasive Microscope to Observe Neurons
DEC 03, 2020
Scientists Invent Noninvasive Microscope to Observe Neurons
To obtain high-resolution images of the brain, researchers usually need to reduce the thickness of the skull or cut into ...
DEC 30, 2020
Clinical & Molecular DX
Of Mice and Men: Deep Learning Transforms Diagnostics
DEC 30, 2020
Of Mice and Men: Deep Learning Transforms Diagnostics
Medical imaging technologies enable physicians to take a peek under the hood, capturing snapshots of the internal organs ...
DEC 31, 2020
Clinical & Molecular DX
Silent Mice Drive Autism Gene Discovery
DEC 31, 2020
Silent Mice Drive Autism Gene Discovery
Around 1 in 54 children in the U.S. are diagnosed with autism spectrum disorder, or ASD, a broad range of conditions tha ...
FEB 11, 2021
Clinical & Molecular DX
Seeing if Hormone Therapy Will Work for Breast Cancer Patients
FEB 11, 2021
Seeing if Hormone Therapy Will Work for Breast Cancer Patients
Only around half of women diagnosed with breast cancer will benefit from hormonal therapy, a cancer treatment that adds, ...
MAR 02, 2021
Cardiology
Creating a Light Switch in the Heart to Regulate Heart Rate
MAR 02, 2021
Creating a Light Switch in the Heart to Regulate Heart Rate
Often when it is dark, we go for a flashlight or our phone to see where we are going. What if I told you that is much th ...
Loading Comments...