DEC 08, 2017 8:54 AM PST

Stomach Trouble? Try the 'Robot in a Pill'

WRITTEN BY: Xuan Pham

Image credit: MIT

Every year, U.S. doctors report about 3,500 cases of swallowed batteries that often necessitate removal via invasive bronchoscopy or endoscopy procedures. Now, scientists say an ingestible “origami robot” can unfold in the stomach and remove foreign objects without complicated surgeries.

"For applications inside the body, we need a small, controllable, untethered robot system," said Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), and co-creator of robot. "It’s really difficult to control and place a robot inside the body if the robot is attached to a tether."
 
The origami robot is constructed from a magnet that’s attached to a biocompatible material commonly used in sausage casing: dried pig intestines. This material is folded up into a small capsule that can be easily swallowed. Once inside the stomach, the capsule dissolves and the origami structure unfolds to its functioning robotic form. An external magnet is used to guide the origami robot to pull out button batteries, such as the ones used in watches and hearing aids.
 
The clever robot was the product of an international collaboration between researchers at the Massachusetts Institute of Technology (MIT), the University of Sheffield in the United Kingdom, and the Tokyo Institute of Technology in Japan. 
 
To demonstrate the robot’s capability, the team used a cross-section model of the esophagus and stomach. They simulated the acidic environment of the stomach juice with water and lemon juice.


In this highly simulated test scenario, they showed the device was able to unfurl in the stomach as expected. The robot was then also able to retrieve a button battery from its lodged location on the stomach wall.
 
The invention still has many more research hurdles to overcome before reaching patients. For example, one crucial question they have to address is how effectively will the robot and foreign object be expelled from the body. This is key to the robot’s success, as otherwise the patient will have just swallowed another foreign magnetic object.
 
While they’re tweaking the logistics of the origami robot, the team is already looking into other applications for their design. The origami robot can be configured to patch internal wounds and even deliver medicines to targeted sites. In addition, they hope to streamline the design, adding internal sensors on the robot unit itself in order to eliminate the need for external magnets for guidance. "It's really exciting to see our small origami robots doing something with potential important applications to healthcare,” said Rus.

Additional source: Forbes

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
SEP 27, 2019
Immunology
SEP 27, 2019
Diseases We Share with Our Canine Companions: Autoimmune Encephalitis in Dogs
Like humans, dogs can develop autoimmune encephalitis, and it’s common - mostly affecting smaller breeds and young...
DEC 22, 2019
Clinical & Molecular DX
DEC 22, 2019
Can Google Health's AI interpret X-rays as well as radiologists?
Patients presenting with severe coughs, chest pain or suspected infections are more than likely to be sent for a chest X-ray -- the most commonly taken med
JAN 11, 2020
Neuroscience
JAN 11, 2020
Molecular Therapy to Self-Repair Nerve Cells
Neurodegenerative diseases such as Multiple Sclerosis (MS), Alzheimer's, and Huntington's Disease are predicated on damage to myelin on nerve cells
FEB 15, 2020
Clinical & Molecular DX
FEB 15, 2020
FDA nod for AI-powered technology to detect strokes
The US Food and Drug Administration (FDA) has provided clearance for a novel technology that uses artificial intelligence (AI) to detect strokes. The platf
FEB 21, 2020
Clinical & Molecular DX
FEB 21, 2020
Diagnosing COVID-19
Diagnosing coronavirus is done through next-generation sequencing, real-time RT-PCR tests, cell culture, and electron miscopy. For patients, that translate
MAR 16, 2020
Clinical & Molecular DX
MAR 16, 2020
New diagnostic tech uses AI to screen blood for over 1400 pathogens
New and reemerging microbial threats continue to challenge the public health and infectious disease response teams world...
Loading Comments...