DEC 13, 2017 3:03 PM PST

Nanoparticles May Be the Future of Cancer Screening

WRITTEN BY: Xuan Pham

Image credit: Pixabay.com

Despite advances in cancer medicine, we are limited by what we can detect. That is, doctors can’t treat something that they can’t see. And in many cases, by the time the cancer is detectable, the disease becomes harder to treat. Now researchers at Rutgers University say a nanoprobe could give doctors the rare window of opportunity to treat the cancer even before it has been detected by conventional diagnostic methods.

The prognosis of many cancer largely depends on when the cancer is caught. The earlier the diagnosis, the better the odds for the patient. By contrast, cancers detected at the late stages generally have worse outcomes. In fact, about 90% of cancer deaths are attributed to metastatic events.

While they’re improving, the current available methods for cancer detection (scans, X-rays, biopsies) are not always accurate when the cancer is in its earliest stages. But it is exactly this early stage that the research team targeted, as it would arguably give patients the best odds.

The team developed nanoparticles that emit short-wave infrared light when encountering metastatic lesions. This nanoprobe is injected intravenously, and is designed to track cancer metastasis at the smallest level. The team called these small cancerous lesions “microlesions.”

In a mouse model of human breast cancer, the nanoprobes picked up microlesions in the bones and the adrenal glands of the animal. By contrast, the same microlesions were undetected until later with standard magenetic resonance imaging (MRI) techniques.

“We've always had this dream that we can track the progression of cancer in real time, and that's what we've done here. We've tracked the disease in its very incipient stages," said Dr. PrabhasMoghe.

"Cancer cells can lodge in different niches in the body, and the probe follows the spreading cells wherever they go," explained Dr. Vidya Ganapathy, the study’s co-author. "You can treat the tumors intelligently because now you know the address of the cancer."

The team asserted the nanoprobes can detect over 100 different types of cancer. Furthermore, they estimate the nanotechnology may be ready for the clinic in about 5 years.

Additional sources: MNT

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
AUG 04, 2020
Clinical & Molecular DX
Alzheimer's Blood Test Serves as a Crystal Ball
AUG 04, 2020
Alzheimer's Blood Test Serves as a Crystal Ball
According to a recent study, the answers could lie in a simple blood test.
SEP 21, 2020
Clinical & Molecular DX
Smart Wearable Patch Signals Trouble Following Traumatic Injury
SEP 21, 2020
Smart Wearable Patch Signals Trouble Following Traumatic Injury
An ambulance pulls up to the site of a car accident, sirens blazing. Paramedics assess the crash victims, looking for si ...
OCT 01, 2020
Cardiology
Investigating Inflammation in Coronary Artery Bypass Grafts
OCT 01, 2020
Investigating Inflammation in Coronary Artery Bypass Grafts
The heart is a vital part of the body that can last one hundred years, yet even a small change can cause massive consequ ...
OCT 14, 2020
Cancer
Using Plasma Scalpels with Chemotherapy Against Brain Cancer
OCT 14, 2020
Using Plasma Scalpels with Chemotherapy Against Brain Cancer
Cold atmospheric plasma is a relatively new technique that utilizes a tool that generates a sort of plasma scalpel, exce ...
OCT 20, 2020
Clinical & Molecular DX
Non-coding RNA As A Barometer For Liver Health
OCT 20, 2020
Non-coding RNA As A Barometer For Liver Health
October is liver cancer awareness month — a month dedicated to educating people about the risk factors and prevent ...
OCT 24, 2020
Clinical & Molecular DX
Software Flags Elevated Cerebral Palsy Risk in Premies
OCT 24, 2020
Software Flags Elevated Cerebral Palsy Risk in Premies
Diagnostic imaging scientists have developed a software tool for predicting the future onset of cerebral palsy in babies ...
Loading Comments...