OCT 09, 2018 2:16 PM PDT

Pharmacological Manipulation of a Brain-Signaling Mechanism Reverses An Autism-Related Pathway

WRITTEN BY: Nouran Amin

According to a study published in the Proceedings of the National Academy of Sciences (PNAS), researchers at Florida Atlantic University have discovered a way to reverse an autism-related pathway in genetically engineered mice by pharmacologically manipulating a brain-signaling pathway.

Image via EverydayHealth

Using an investigational drug to target a brain-signaling pathway, scientists were able to normalize the disrupted physiology and behaviors of mice. Additionally, these effects were also observed in adult mice suggesting a possible therapeutic drug to treat adults with autism spectrum disorder (ASD).

Presently, no FDA-approved medications that improve the core symptoms of ASD are in existence. However, the research study may bring new hope in developing a drug based on a novel approach that targets an enzyme involved in stress and inflammation. The research was motivated by decades of studies on the mood-regulating hormone—serotonin which regulates many brain synapses that are the gaps between nerve cells.

Serotonin is dependent on another protein called serotonin transporter (SERT), which regulates the level of serotonin. Multiple studies show that changes in SERT expression and function may be implicated in neuropsychiatric disorders, such as ASD.

"We suspected that normally as serotonin signaling changes, neurons turn up or down the activity of this transporter keeping serotonin levels finely balanced," says Randy Blakely, Ph.D., senior author, executive director of FAU's Brain Institute. “We generated evidence for this idea using cultured cells that expressed SERT, but what these observations meant for the brain or brain disorders was unclear. Our years of studying SERT gave us a clue as to how to tone down SERT hyperactivity without eliminating the protein's normal function.”

Additionally, Blakely and research team previously discovered an enzyme that may serve as a key SERT regulator. The enzyme is called p38α MAPK and is well known to contribute to inflammatory responses. When researchers genetically engineered an Ala56 mutation into the genome of a mouse, observations were noted regarding where brain biochemistry, physiology and behavior—as predicted, SERT was found to be high by p38α MAPK. "The studies primarily told us that Ala56 wasn't a benign mutation and possibly that the mice might provide a testbed for developing novel serotoninergic medications," said Blakely.

Relatively rare, the SERT Ala56 mutation occurs in about 1 percent of the U.S. population. Despite the research on human studies that found the DNA change is related to traits of ASD, others who carried the mutation did not exhibit any symptoms of ASD. "We don't think the variant is a cause for ASD in many people; only in those where other genetic or environmental changes have occurred. The bigger message is that serotonin's role in brain disorders likely goes far beyond depression," said Blakely. "Even though the first connections between serotonin and ASD were made more than 50 years ago, how we might tap into these observations for potential treatments hasn't been clear. We think our study suggests a new direction for medication development, particularly if we can identify those patients where changes in brain serotonin make a difference."

Source: Proceedings of the National Academy of Science (PNAS), Florida Atlantic University

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
DEC 16, 2019
Drug Discovery & Development
DEC 16, 2019
IV Treatment for Traumatic Brain Injury
Scientists are now using exosomes intravenously as a method of cell-to-cell technology for treating patients with traumatic brain injury (TBI). They discov...
JAN 04, 2020
Cardiology
JAN 04, 2020
New Protein Therapy Improves Heart Attack Survival Rates
Heart disease is the top killer in the Western world. This is partially because, if one manages to survive an initial heart attack, oftentimes the scar tis...
JAN 15, 2020
Drug Discovery & Development
JAN 15, 2020
Treating Malaria: Molecular Understanding of Drug Interactions
Crystallization is a process central to drug development that despite centuries of facilitating a particular method, chemists are still learning how to gra...
FEB 13, 2020
Cell & Molecular Biology
FEB 13, 2020
Study of Early-Onset Parkinson's Reveals Potential Therapeutic
Around 500,000 Americans are diagnosed with Parkinson's disease every year, and the rate of the disease is rising....
FEB 21, 2020
Drug Discovery & Development
FEB 21, 2020
Healing Bone Fractures
Studies on rats revealed that two existing drugs can boost repair machinery by triggering the release of bone marrow stem cells. Findings were published in...
FEB 25, 2020
Drug Discovery & Development
FEB 25, 2020
FDA Approves Non-Statin Drug to Lower Cholesterol
The US Food and Drug Administration (FDA) has approved a new drug that lowers cholesterol levels.The drug, known as Nexletol, works differently from existi...
Loading Comments...