MAR 31, 2019 8:34 PM PDT

Glowing Tumors Reveal How Immunotherapeutics Work

WRITTEN BY: Nouran Amin

In a study published in the Journal of Clinical Investigation, researchers used positron emission tomography (PET) scans to examine how an immunotherapy drug reaches a tumor and the parts of a cancer that remain unaffected.

Learn more about how PET scans work:

The process of PET imaging uses a synthesized radiolabeled protein that locks on to tumor cells—this allows researchers to visually follow where the so-called checkpoint inhibitor drug binds to a tumor. "This approach offers a vital step toward directly measuring how well immunotherapy drugs are able to engage a tumor in any given person," says Sridhar Nimmagadda, Ph.D., associate professor of radiology and radiological science at the Johns Hopkins University School of Medicine and a member of the Sidney Kimmel Comprehensive Cancer Center.

Radiolabeled protein lights up tumor implanted in the arm of a mouse under a PET scan. The researchers hope to use scans like this one to calculate in real time how much of an immunotherapy drug reaches a tumor and what parts of a cancer remain unaffected. Credit: Sridhar Nimmagadda via John Hopkins

If PET imaging precision is confirmed to be highly effective in additional tests, it could streamline cancer therapy by enhancing the therapeutic dose of a drug. The use of checkpoint inhibitors is a form of cancer therapy designed to help the immune systems recognize cancer cells and to target them. For example, the programmed death ligand 1 (PD-L1) is one such checkpoint target by three approved therapeutics called atezolizumab, avelumab and durvalumab by the U.S. Food and Drug Administration (FDA).

In the study, researchers created a radiolabeled small protein that binds to PD-L1 which facilitates marking its receptor with a radiotracer seen with PET imaging technique. "In human patients, this could give us some insight about how to optimize further treatments by increasing the dose or substituting other drugs or therapies more quickly,” says Nimmagadda.

Source: John Hopkins School of Medicine

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
APR 27, 2020
Drug Discovery & Development
APR 27, 2020
Making Cardiac Medicine From Foxglove Plants
Foxglove plants are known to be shaped like bells and have long decorated many gardens. They belong to a genus of plants ...
MAY 09, 2020
Cancer
MAY 09, 2020
Examining a Combination Therapy Against Gastric Cancer
Often when it comes to treatments for cancer, designing or discovering new leads can take years. One of the common pract ...
MAY 14, 2020
Immunology
MAY 14, 2020
Antibody-laden Nanoparticles to Help COVID Patients Breathe Easy
Antibodies are a powerful countermeasure against COVID-19. Not only can they relieve symptoms in patients experiencing s ...
MAY 25, 2020
Genetics & Genomics
MAY 25, 2020
FDA Approves the First Treatment for Neurofibromatosis 1
In a major breakthrough, the Food and Drug Administration has approved a treatment for a genetic disorder called neurofi ...
MAY 13, 2020
Drug Discovery & Development
MAY 13, 2020
Drug Targets Off Episodes of Parkinson
A novel drug was approved by the FDA to target the “off” episodes of Parkinson disease. The drug is referred ...
JUN 04, 2020
Cannabis Sciences
JUN 04, 2020
Which is Better for Pain Relief: CBD or THC?
Cannabidiol (CBD) and tetrahydrocannabinol (THC) are the two most famous compounds in cannabis. While CBD is known for i ...
Loading Comments...