APR 20, 2019 11:27 PM PDT

How Exactly Does General Anesthesia Work?

WRITTEN BY: Nouran Amin

General anesthesia is a medical miracle that enabled millions of patients to have life-saving surgeries without pain. However, despite the miraculous work of the drug, scientist are still unsure how exactly does it work. The most widely accepted theory was general anesthesia dampened down the brains inability to feel pain. Now, a study by Duke University researchers may bring some answers.

In a publication in Neuron, several different general anesthesia drugs were found to hijack the neural circuitry implicated in falling sleep. The researchers were able to trace the neural circuitry to a tiny pool of cells at the base of the brain. These cells are responsible for releasing critical hormones that play a role the regulation of mood and sleep. Ultimately, these hormones maintain the state of general anesthesia.

The findings of the study bring valuable insights for the generation of newer drugs that could place people to sleep with less side effects. The study also questioned the predominant view of general anesthesia. "Perhaps rather than simply inhibiting neurons, anesthetics could also activate certain neurons in the brain," said Duke University graduate student, Li-Feng Jiang-Xie.

General anesthesia drugs were shown to induce unconsciousness by activating a tiny cluster of cells at the base of the brain called the supraoptic nucleus (shown in red), while the rest of the brain remains in a mostly inactive state (shown in blue). Credit: Duke University

The new theory was tested by placing mice under general anesthesia with different but commonly used drugs. They then used molecular markers to find the neurons that were commonly activated by the anesthetics.

The results indicated that a cluster of the activated neurons were located in the supraoptic nucleus, a tiny brain region known to have leggy projections that secrete large amounts of hormones into the bloodstream. "Most of the anesthesia-activated cells were a kind of hybrid cell that connects the nervous system and the endocrine system," said Jiang-Xie. "That took us by surprise and led us into unexplored territory for understanding the neural pathways of general anesthesia."

Surprisingly, when the researchers killed these cells in the mice, they were unable to fall asleep.

"Many people, particularly those with Alzheimer's disease, have difficulty falling to sleep, yet current medications have troublesome side effects," says Duke University post-doctoral fellow, Luping Yin, Ph.D. "If we can find ways to manipulate this neural circuitry, perhaps by targeting hormones or small peptides, then it could lead to the development of better sleeping pills."

Source: Duke University

About the Author
  • Nouran is a scientist, educator, and life-long learner with a passion for making science more communicable. When not busy in the lab isolating blood macrophages, she enjoys writing on various STEM topics.
You May Also Like
MAR 04, 2021
Infographics
All You Need to Know about COVID-19 Vaccines
MAR 04, 2021
All You Need to Know about COVID-19 Vaccines
After over a year lockdowns brought on by the pandemic, hopes for returning to something even similar to ' ...
APR 01, 2021
Immunology
Tumor-Killing 101: Vaccine Trains Immune Cells to Keep Skin Cancer at Bay
APR 01, 2021
Tumor-Killing 101: Vaccine Trains Immune Cells to Keep Skin Cancer at Bay
Cancer researchers have developed a therapeutic vaccine for melanoma, a deadly form of skin cancer. Instead of protectin ...
APR 07, 2021
Drug Discovery & Development
Therapeutics Enhance The Body's Natural Killers
APR 07, 2021
Therapeutics Enhance The Body's Natural Killers
Most people who have been prescribed pain killers are familiar with fentanyl, oxycodone, and morphine. These substances ...
MAY 06, 2021
Cannabis Sciences
New CBD Analog Outperforms Regular CBD for Pain Relief
MAY 06, 2021
New CBD Analog Outperforms Regular CBD for Pain Relief
Researchers from Temple University Health System have found that a novel cannabidiol (CBD) analog can reverse pain sensi ...
MAY 12, 2021
Technology
Belkin Laser Completes Enrollment for Trial Studying New Glaucoma Laser Treatment
MAY 12, 2021
Belkin Laser Completes Enrollment for Trial Studying New Glaucoma Laser Treatment
Belkin Laser, a small Israel-based biotechnology company, has announced that it has completed enrollment for its pivotal ...
MAY 27, 2021
Neuroscience
Research Less Likely to Be True is Cited More
MAY 27, 2021
Research Less Likely to Be True is Cited More
Researchers from the University of California San Diego have found that non-replicable data is cited 153 times more ofte ...
Loading Comments...