APR 20, 2019 11:27 PM PDT

How Exactly Does General Anesthesia Work?

WRITTEN BY: Nouran Amin

General anesthesia is a medical miracle that enabled millions of patients to have life-saving surgeries without pain. However, despite the miraculous work of the drug, scientist are still unsure how exactly does it work. The most widely accepted theory was general anesthesia dampened down the brains inability to feel pain. Now, a study by Duke University researchers may bring some answers.

In a publication in Neuron, several different general anesthesia drugs were found to hijack the neural circuitry implicated in falling sleep. The researchers were able to trace the neural circuitry to a tiny pool of cells at the base of the brain. These cells are responsible for releasing critical hormones that play a role the regulation of mood and sleep. Ultimately, these hormones maintain the state of general anesthesia.

The findings of the study bring valuable insights for the generation of newer drugs that could place people to sleep with less side effects. The study also questioned the predominant view of general anesthesia. "Perhaps rather than simply inhibiting neurons, anesthetics could also activate certain neurons in the brain," said Duke University graduate student, Li-Feng Jiang-Xie.

General anesthesia drugs were shown to induce unconsciousness by activating a tiny cluster of cells at the base of the brain called the supraoptic nucleus (shown in red), while the rest of the brain remains in a mostly inactive state (shown in blue). Credit: Duke University

The new theory was tested by placing mice under general anesthesia with different but commonly used drugs. They then used molecular markers to find the neurons that were commonly activated by the anesthetics.

The results indicated that a cluster of the activated neurons were located in the supraoptic nucleus, a tiny brain region known to have leggy projections that secrete large amounts of hormones into the bloodstream. "Most of the anesthesia-activated cells were a kind of hybrid cell that connects the nervous system and the endocrine system," said Jiang-Xie. "That took us by surprise and led us into unexplored territory for understanding the neural pathways of general anesthesia."

Surprisingly, when the researchers killed these cells in the mice, they were unable to fall asleep.

"Many people, particularly those with Alzheimer's disease, have difficulty falling to sleep, yet current medications have troublesome side effects," says Duke University post-doctoral fellow, Luping Yin, Ph.D. "If we can find ways to manipulate this neural circuitry, perhaps by targeting hormones or small peptides, then it could lead to the development of better sleeping pills."

Source: Duke University

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
FEB 02, 2020
Microbiology
FEB 02, 2020
A Potential Treatment for MERS is Found
A coronavirus causes MERS, which currently has no treatment. This work may help change that.
FEB 28, 2020
Drug Discovery & Development
FEB 28, 2020
How Dietary Supplement Citicoline Improves Memory
For some time now, Citicoline has been known for its ability to improve memory and reduce cognitive decline. A primary ingredient in many pre-made nootropi
MAR 13, 2020
Immunology
MAR 13, 2020
Malaria drug treats lupus and prevents diabetes
A drug commonly used to treat certain types of malaria has been found to have some surprising synergistic effects: having an anti-inflammatory effect on lu
MAR 05, 2020
Drug Discovery & Development
MAR 05, 2020
Molecule Found in Oranges Could Treat Obesity
Scientists at Western University isolated a molecule from oranges and sweet tangerines called ‘nobiletin’. Through the studies on mice the mole
MAR 14, 2020
Chemistry & Physics
MAR 14, 2020
Scientists Developed "Molecular Drills" to Treat Skin Diseases
Molecular machines are small chemical structures that are capable of achieving mechanical tasks that's similar to their macroscopic counterparts, excep
APR 04, 2020
Cancer
APR 04, 2020
Unique Cancer Mutation Hijacks Nearby Signaling Pathway
  In cancer, tyrosine kinase mutations are quite common. MET is one such example that normally binds its native ligand, hepatocyte growth factor
Loading Comments...