APR 28, 2015 6:21 PM PDT

A New Electrolysis Method Could Change Everything

WRITTEN BY: Andrew J. Dunlop
So, we want to have a hydrogen fueled future, right? It's a truly clean fuel that doesn't emit CO2 when burned. It would be the perfect replacement for fossil fuels for every type of vehicle from cars to trucks to trains and ships and even airplanes. It would be the perfect medium for storing renewable energy, especially from intermittent sources like solar. A solar generating plant that produced hydrogen could keep sending out power even when the sun wasn't shining. Hydrogen can be made from water, even sea water, which obviously there is plenty of here on Earth, using a process called electrolysis (no, not the hair removal process). It's a process that uses electricity to break water into its component parts: oxygen and hydrogen. But...up to this point electrolysis has been complicated and expensive. At École Polytechnique Fédérale De Lausanne, or ÉPFL in Switzerland, a team headed by Demetri Psaltis has developed a system that may be about to change all of that.

What's happening on a microscopic level during Psaltis' electrolysis technique

In a conventional electrolysis system, two electrodes, the cathode and the anode are submerged in water and separated by a polymer membrane. An electric current is sent through the cathode. As it passes through the water to the anode, the water molecules to break apart into oxygen and hydrogen. The membrane keeps the two gases from mixing together and making an explosive mixture. Membranes are usually made of Nafion, which is extremely stable and good at conducting ions. But Nafion membranes have some major drawbacks. They are expensive. They have a limited lifetime, and only work in highly acidic solutions, which are toxic and potentially dangerous.

Psaltis and his team have created a system that works a bit differently. Their new system places the electrodes less than a few hundred micrometers apart in a microfluidic device. When the liquid moves between the electrodes above a certain speed, the two gases are pushed in opposite directions. Due to the lift forces caused by the Segré-Silberberg effect the two gases are guided into separate outlets, all without needing a membrane, meaning much lower cost, and a much simpler, much more reliable device.

"Our device has the potential to surpass the performance of a similar water-splitting apparatus that relies on an ion conductive membrane," says Mohammad Hashemi, the first author of a paper on the team's efforts. "This is due to the higher ion conduction in liquid electrolytes than in common solid membranes. As the only dimension that needs to remain small is the inter-electrode distance, it is possible to implement the same concept using high surface area electrodes as side walls of narrow electrolyte channels."

Psaltis and his team are currently working on scaling up the design for higher production rates, meaning that soon, if all goes according to plan, they could potentially change the entire world.


(Sources: phys.org, Wikipedia)
About the Author
  • Andrew J. Dunlop lives and writes in a little town near Boston. He's interested in space, the Earth, and the way that humans and other species live on it.
You May Also Like
JAN 12, 2020
Plants & Animals
JAN 12, 2020
Diego the Giant Tortoise Returning to Wild After Saving His Species
One would witness a plethora of exotic animals upon visiting the renowned Galápagos Islands, one of which might be the Galápagos giant tortoi...
JAN 15, 2020
Earth & The Environment
JAN 15, 2020
We need flexible Marine Protected Areas
The laws that apply to much of the world’s international waters are out of date – that’s why world leaders are hard at work to improve th...
JAN 26, 2020
Microbiology
JAN 26, 2020
The Planet's Soil is Home to Microbe-Eating Protists
Protists don't fit neatly into any other category of organism; they are eukaryotes, but they are not a plant, fungi or animal....
JAN 27, 2020
Plants & Animals
JAN 27, 2020
This Octopus Emerges From the Water in Search of Food
Most octopuses live and breathe underwater, just like the vast majority of other marine animals. But this octopus endemic to Australia has a special abilit...
JAN 28, 2020
Earth & The Environment
JAN 28, 2020
Humans Causing "Blue Acceleration" on Ocean Resources
Humans have depended on ocean resources for centuries. However, a recent analysis of the state of the ocean showed a sharp acceleration in human pressures...
FEB 12, 2020
Earth & The Environment
FEB 12, 2020
Expect more landslides in High Mountain Asia
A new study from NASA/Goddard Space Flight Center highlights the first quantitative study of the link between precipitation and landslides in the High Moun...
Loading Comments...