NOV 25, 2019 10:28 AM PST

A new way to capture nitrogen dioxide

A research team led by scientists from The University of Manchester has figured out a new way of making toxic pollutants helpful. The system uses the nitrogen dioxide (NO2) in exhaust gas streams from fossil fuel power plants to produce industrial chemicals like nitric acid with only the input of water and air. This twist on a preexisting technology is detailed in the journal Nature Chemistry.

Similar to past developments, the system uses a metal-organic framework (MOF) material, meaning a material that is made of super small 3D porous structures that are able of capturing gases. In the case of this MOF, NO2 is the main target for capture.

Although MOFs are small, their structures are such that their surface area is huge. According to Science Daily, one gram of material can have a surface area equivalent to a football pitch! That means that they are extremely efficient at capturing gases.

"This is the first MOF to both capture and convert a toxic, gaseous air pollutant into a useful industrial commodity,” said lead author Dr. Sihai Yang, who is a senior lecturer at The University of Manchester's Department of Chemistry.

But what makes this MOF special in comparison to other MOFs? Called the MFM-520, this technology is able to withstand the toxicity of NO2 in order to capture it at ambient pressures and temperatures in the presence of moisture, sulfur dioxide and carbon dioxide. This versatility means that it be used in many different settings.

To figure this out, the researchers used neutron spectroscopy and computational techniques to see how MFM-520 captures nitrogen dioxide molecules. "The characterization of the mechanism responsible for the high, rapid uptake of NO2 will inform future designs of improved materials to capture air pollutants." said first author, Jiangnan Li.

The scientists hope that their development of this technology will lead to improvements in controlling the polluting effects of nitrogen dioxide for the environment, and particularly for air pollution control.

Sources: Nature Chemistry, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
AUG 03, 2020
Plants & Animals
Pollutants, Pathogens and Toxins Found in Shellfish
AUG 03, 2020
Pollutants, Pathogens and Toxins Found in Shellfish
Scientists used cutting edge technologies to assess how pervasive toxic or household chemicals and pathogens like plasti ...
AUG 03, 2020
Earth & The Environment
What the heck are biocrusts and why are they so important?
AUG 03, 2020
What the heck are biocrusts and why are they so important?
Have you ever heard of biocrusts? No, it’s not a new kind of pizza crust. Biocrusts refer to a group of tiny deser ...
AUG 05, 2020
Plants & Animals
Satellite Images Reveal New Emperor Penguin Colonies
AUG 05, 2020
Satellite Images Reveal New Emperor Penguin Colonies
The British Antarctic Survey (BAS) and the European Space Agency (ESA) recently shared excellent news about emperor peng ...
SEP 01, 2020
Chemistry & Physics
No Child's Play - Advanced Bubble Manipulation Method can Transform Chemical Processing
SEP 01, 2020
No Child's Play - Advanced Bubble Manipulation Method can Transform Chemical Processing
Gas bubbles are fascinating, playful objects in children's eyes. In fact, they play an essential role in many indust ...
SEP 15, 2020
Microbiology
If They Must, Methane-Eating Microbes Will Consume Ammonia
SEP 15, 2020
If They Must, Methane-Eating Microbes Will Consume Ammonia
There are many different kinds of microbes, and some can use unusual substances to survive. Methanotrophs, for example, ...
OCT 23, 2020
Chemistry & Physics
The Ever-Evolving Battle to Fight Corrosion in Nuclear Reactors
OCT 23, 2020
The Ever-Evolving Battle to Fight Corrosion in Nuclear Reactors
Since its birth in the early 20th century, atomic research has brought mostly positive impacts to our lives. This week i ...
Loading Comments...