SEP 17, 2015 03:34 PM PDT

Doctoral Student Creates A System To Vastly Improve Wind Turbine Efficiency

Wind turbines are great for producing clean energy, but they have two major problems. The one you may be thinking of is that it’s not windy all the time, so they can’t constantly or consistently produce power. The less well known problem for wind turbines is that in very high winds, they angle their blades to spill off a significant amount of the wind energy to keep from damaging themselves. This unfortunately means that wind turbines, on average, miss out on about 40 percent of the energy they could be generating. Je Ching, a doctoral candidate studying electrical engineering at the University of Nebraska-Lincoln may have come up with a design that could fix both of these problems.

Jie Cheng with his prototype

Cheng has designed a system that can actually capture and store surplus wind energy for later use to produce electricity. In a recent study, Cheng compared his prototype's performance against a conventional wind turbines, based on historical wind data from rural Springview, Nebraska, for a week. He found that with his system attached, a 250-kilowatt wind turbine system was capable of yielding an additional 3,830 kilowatt-hours per week of electricity. That comes out to roughly 16,400 extra kilowatt-hours a month. According to the U.S. Energy Information Administration, that’s about 18 times the monthly energy use of the average American household. Cheng’s study also showed that his system would lower total energy costs slightly along with significantly reducing fluctuations in power generation.

Physicists studying conventional wind turbine designs have found that they are only capable of capturing 59.3 percent of the potential kinetic energy from the wind. This comes from the fact that they can’t produce energy when the wind isn’t strong enough, and from the fact that they spill off energy when the wind gets too strong, so as not to damage themselves.

Cheng's system directs this spillage into an air compression tank, where the excess energy that would otherwise be wasted remains, until it is needed. When wind speeds dip below the point where the turbine operating at its optimal capacity, the tank begins using its compressed air to regenerate electricity. In this way, Cheng’s system addresses both the wasted potential energy that would otherwise be wasted during strong winds and the deficit in production that turbines usually suffer during periods of low wind speeds.

"The biggest problem for wind energy, Cheng explains, “is that it's not a reliable energy resource. … Even if there's not enough wind to generate electricity, the community still needs it. If we can (scale up) this system, it could improve reliability by producing electricity even when there's no wind.”

"We have a lot of wind energy here,” Cheng says, “and we live among grasslands, so there's little environmental (interference). … I see a lot of potential for this, especially in Nebraska."

Source: Phys.org
About the Author
  • Andrew J. Dunlop lives and writes in a little town near Boston. He's interested in space, the Earth, and the way that humans and other species live on it.
You May Also Like
NOV 28, 2018
Earth & The Environment
NOV 28, 2018
Scientists determine cause behind huge Asian smoke cloud
New research published recently in Proceedings of the National Academy of Sciences presents surprising findings concerning the origins of the smoke cloud t...
DEC 18, 2018
Plants & Animals
DEC 18, 2018
Learn Why the State of Utah Drops Fish From Airplanes
Utah’s Division of Wildlife Resources drops thousands of fish into mountain lakes from airplanes every single year, and while it might seem like a po...
JAN 25, 2019
Earth & The Environment
JAN 25, 2019
Drilling record broken in West Antarctica at 2 km deep
A record has been broken – quite literally – in the West Antarctic ice sheet: scientists drilled down over two kilometers deep. But they weren&...
FEB 04, 2019
Genetics & Genomics
FEB 04, 2019
A Rapid New Method to Help Modern Crops Resist Disease
Scientists can now find genes in wild plants that can make modern crops more resistant to disease, without impacting yield or using pesticides....
FEB 11, 2019
Earth & The Environment
FEB 11, 2019
Uncovering Namibia's glacial past
Upon embarking on a research trip in the vast deserts of Namibia, geologists from West Virginia University realized as soon as they got in the field that t...
FEB 19, 2019
Earth & The Environment
FEB 19, 2019
The best climate change plan: invest in trees
The American Association for the Advancement of Science (AAAS) had its annual meeting in Washington DC this year and there were a lot of hot topics. One of...
Loading Comments...