MAR 30, 2016 7:30 AM PDT

Climate shifts linked to ocean chemistry

U. TORONTO (CAN) — Humans often take the blame for climate change, but new research examines another force at work: the chemistry of the world’s oceans.
 
Are oceans to blame for climate shifts?

Scientists from the University of Toronto and the University of California, Santa Cruz point to changes in seawater chemistry as one potential cause of the cooling trend of the past 45 million years.

“Seawater chemistry is characterized by long phases of stability, which are interrupted by short intervals of rapid change,” says Ulrich Wortmann, a professor in the earth sciences department at the University of Toronto and lead author of the study published in Science.

“We’ve established a new framework that helps us better interpret evolutionary trends and climate change over long periods of time,” says Wortmann. “The study focuses on the past 130 million years, but similar interactions have likely occurred through the past 500 million years.”

Wortmann and co-author Adina Paytan of the Institute of Marine Sciences at the University of California Santa Cruz point to the collision between India and Eurasia approximately 50 million years ago as one example of an interval of rapid change. This collision enhanced dissolution of the most extensive belt of water-soluble gypsum on Earth, stretching from Oman to Pakistan, and well into Western India—remnants of which are well exposed in the Zagros mountains.

The authors suggest the dissolution or creation of such massive gypsum deposits will change the sulfate content of the ocean, and that this will affect the amount of sulfate aerosols in the atmosphere and thus climate.

“We propose that times of high sulfate concentrations in ocean water correlate with global cooling, just as times of low concentration correspond with greenhouse periods,” says Paytan.

“When India and Eurasia collided, it caused dissolution of ancient salt deposits which resulted in drastic changes in seawater chemistry,” Paytan continues. “This may have led to the demise of the Eocene epoch—the warmest period of the modern-day Cenozoic era—and the transition from a greenhouse to icehouse climate, culminating in the beginning of the rapid expansion of the Antarctic ice sheet.”

The researchers combined data of past seawater sulfur composition, assembled by Paytan in 2004, with Wortmann’s recent discovery of the strong link between marine sulfate concentrations and carbon and phosphorus cycling. They were able to explain the seawater sulfate isotope record as a result of massive changes to the accumulation and weathering of gypsum—the mineral form of hydrated calcium sulfate.

“While it has been known for a long time that gyspum deposits can be formed and destroyed rapidly, the effect of these processes on seawater chemistry has been overlooked,” says Wortmann. “The idea represents a paradigm shift in our understanding of how ocean chemistry changes over time and how these changes are linked to climate.”

More news from the University of Toronto: https://news.utoronto.ca/

This article was originally published on futurity.org.
About the Author
MS
Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
OCT 07, 2022
Earth & The Environment
United Nations Genetic Diversity Target Deadline Has Passed
OCT 07, 2022
United Nations Genetic Diversity Target Deadline Has Passed
In a recent study published in Science, an international team of researchers led by Stanford University examine how habi ...
OCT 23, 2022
Microbiology
Studies Highlight Danger Air Pollution Poses to Fetuses & Infants
OCT 23, 2022
Studies Highlight Danger Air Pollution Poses to Fetuses & Infants
A recent report in Lancet Planetary Health has shown that when humans are developing in the womb, they can be exposed to ...
OCT 19, 2022
Plants & Animals
Unparalleled Levels of Insects Harming Modern Day Plants
OCT 19, 2022
Unparalleled Levels of Insects Harming Modern Day Plants
In a recent study published in the Proceedings of the National Academy of Sciences, a team of researchers led by the Uni ...
OCT 21, 2022
Technology
Can You Smell What the VR is Cooking?
OCT 21, 2022
Can You Smell What the VR is Cooking?
In a recent study published in the International Journal of Human-Computer Studies, a team of researchers from Sweden ha ...
OCT 29, 2022
Technology
Making EVs More Enticing for Drivers
OCT 29, 2022
Making EVs More Enticing for Drivers
In a recent study published in IEEE Transactions on Intelligent Transport Systems, a pair of researchers from North Caro ...
DEC 07, 2022
Immunology
A Mystery Solved - Why Colds & Flu Are More Common in Winter
DEC 07, 2022
A Mystery Solved - Why Colds & Flu Are More Common in Winter
Most people would agree that colds and especially flu infections are far more common in winter. While we know that some ...
Loading Comments...