MAR 30, 2016 7:30 AM PDT

Climate shifts linked to ocean chemistry

U. TORONTO (CAN) — Humans often take the blame for climate change, but new research examines another force at work: the chemistry of the world’s oceans.
 
Are oceans to blame for climate shifts?

Scientists from the University of Toronto and the University of California, Santa Cruz point to changes in seawater chemistry as one potential cause of the cooling trend of the past 45 million years.

“Seawater chemistry is characterized by long phases of stability, which are interrupted by short intervals of rapid change,” says Ulrich Wortmann, a professor in the earth sciences department at the University of Toronto and lead author of the study published in Science.

“We’ve established a new framework that helps us better interpret evolutionary trends and climate change over long periods of time,” says Wortmann. “The study focuses on the past 130 million years, but similar interactions have likely occurred through the past 500 million years.”

Wortmann and co-author Adina Paytan of the Institute of Marine Sciences at the University of California Santa Cruz point to the collision between India and Eurasia approximately 50 million years ago as one example of an interval of rapid change. This collision enhanced dissolution of the most extensive belt of water-soluble gypsum on Earth, stretching from Oman to Pakistan, and well into Western India—remnants of which are well exposed in the Zagros mountains.

The authors suggest the dissolution or creation of such massive gypsum deposits will change the sulfate content of the ocean, and that this will affect the amount of sulfate aerosols in the atmosphere and thus climate.

“We propose that times of high sulfate concentrations in ocean water correlate with global cooling, just as times of low concentration correspond with greenhouse periods,” says Paytan.

“When India and Eurasia collided, it caused dissolution of ancient salt deposits which resulted in drastic changes in seawater chemistry,” Paytan continues. “This may have led to the demise of the Eocene epoch—the warmest period of the modern-day Cenozoic era—and the transition from a greenhouse to icehouse climate, culminating in the beginning of the rapid expansion of the Antarctic ice sheet.”

The researchers combined data of past seawater sulfur composition, assembled by Paytan in 2004, with Wortmann’s recent discovery of the strong link between marine sulfate concentrations and carbon and phosphorus cycling. They were able to explain the seawater sulfate isotope record as a result of massive changes to the accumulation and weathering of gypsum—the mineral form of hydrated calcium sulfate.

“While it has been known for a long time that gyspum deposits can be formed and destroyed rapidly, the effect of these processes on seawater chemistry has been overlooked,” says Wortmann. “The idea represents a paradigm shift in our understanding of how ocean chemistry changes over time and how these changes are linked to climate.”

More news from the University of Toronto: https://news.utoronto.ca/

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
DEC 05, 2019
Earth & The Environment
DEC 05, 2019
Scientists Get a Closer Look at "The Plastisphere"
Plastic litter is a global problem, and some of the tiniest culprits are not visible to the naked eye. These microplastics have infiltrated the world's...
DEC 14, 2019
Earth & The Environment
DEC 14, 2019
Toxic stormwater pollution in LA beaches
Stormwater pollution is a big problem for LA beaches, report researchers with Heal the Bay, a non-profit environmental organization in the area. Scientists...
DEC 23, 2019
Microbiology
DEC 23, 2019
Snow-Loving Algae Thrive at the Heights of the Andes
The Andes Mountain range runs along the edge of western South America. Microbial life has found a home high in those mountains....
DEC 29, 2019
Microbiology
DEC 29, 2019
Coral Reef-Building Organisms Capture First Place in Small World Competition
The winner of the Nikon Small World in Motion contest has captured a tiny animal called coral polyp as light levels go down and it emerges....
JAN 15, 2020
Earth & The Environment
JAN 15, 2020
We need flexible Marine Protected Areas
The laws that apply to much of the world’s international waters are out of date – that’s why world leaders are hard at work to improve th...
JAN 21, 2020
Earth & The Environment
JAN 21, 2020
Scientists Assess GHG Emissions Related to Palm Oil Land Conversion
Palm oil production remains problematic in several ways, and a new study from researchers at the University of Nottingham has quantified one of these probl...
Loading Comments...