MAR 07, 2017 10:29 AM PST

Atmospheric humidity impacts grasslands more than rain

A new study conducted by scientists at Stanford University and Columbia University was published yesterday in the journal Nature Geoscience. The study concluded that  U.S. grasslands are more than three times more sensitive to vapor pressure deficit (VPD), or atmospheric dryness, than they are to precipitation. By looking at 33 years of climate and vegetation satellite data, the scientists were able to determine how plants regulate water and carbon dioxide under dry conditions, a topic which is increasingly important as effects from climate change are causing more frequent and severe droughts.

A dry grassland. Photo: Meteorological Ecological Issues

The researchers used remote sensing satellite data from 1981 to 2013 that showed plant greenness, which can be used as an indicator of plant productivity. They divided the US’s grasslands into several regions based on data recording the plants’ behaviors with various climates and precipitation conditions.

"Just looking at changes in precipitation isn't going to tell you the whole story," said lead author Alexandra Konings, an assistant professor of Earth System Science in Stanford's School of Earth, Energy & Environmental Sciences (Stanford Earth). "U.S. grasslands are way more sensitive to vapor pressure deficit, which is important. Because VPD is so tightly linked to temperature, we can predict that it's going to keep going up in the future."

In the US, grasslands cover about 26% of the country, and about 20% of the planet’s surface as a whole. They host a variety of biodiversity and provide an important habitat for livestock in the meat and dairy industries, reports Stanford News. Furthermore, the plants that make up grasslands are an important carbon uptake source.

Science Daily reports that grasslands that respond to drought by keeping their stomata open (a characteristic called anisohydric behavior) are more sensitive to dryness of the atmosphere than those that close their stomata and stop growth to save water (which is called isohydric behavior). The study shows that plants that keep their stomata open are more damaged by drought in U.S. grasslands because it suppresses the plants’ growth over the course of a growing season.

“Grasslands are really interesting because they show such a huge diversity in that isohydricity behavior,” said Konings, who conducted initial research for the study while a postdoctoral researcher at Columbia before joining Stanford Earth. “They have really different strategies in how they respond to drought.”

These diverse survival strategies are imperative to understand from a grassland management perspective. If scientists are able to determine what physiological characteristics allow certain species to thrive in hotter and drier conditions, there is hope that certain preservation methods may be able to conserve grasslands, in the US and around the world, despite climate change’s grasp. The scientists also hope to be able to apply their results to ecosystems other than grasslands, thus determining a more complete picture of drought-hardy plant species throughout biomes.

Sources: ScienceDaily, Environmental News Network, Stanford News

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
SEP 16, 2020
Plants & Animals
The World is Failing to Save Biodiversity
SEP 16, 2020
The World is Failing to Save Biodiversity
Earlier this week, the UN Convention on Biological Diversity (CBD) released the Global Biodiversity Outlook 5 (GBO- ...
NOV 03, 2020
Cell & Molecular Biology
The Connections Between Toxins, Genes, and Disease
NOV 03, 2020
The Connections Between Toxins, Genes, and Disease
We are exposed to a vast array of chemicals every day. Many are harmless or even important, like the air we breathe, wat ...
NOV 04, 2020
Plants & Animals
Scientists Rediscover "Lost" Chameleon Species in Madagascar
NOV 04, 2020
Scientists Rediscover "Lost" Chameleon Species in Madagascar
Voeltzkow’s chameleon was recently rediscovered after disappearing for more than 100 years. According to an articl ...
DEC 31, 2020
Earth & The Environment
Land subsidence projections for 2040
DEC 31, 2020
Land subsidence projections for 2040
Results from a meta-analysis literature review of global land subsidence have been reported in a Policy Forum of Science ...
JAN 10, 2021
Earth & The Environment
What does species extinction have to do with the extinction of human languages?
JAN 10, 2021
What does species extinction have to do with the extinction of human languages?
Is there a connection between the extinction of species and that of human languages? Ecologists have long recognized a g ...
JAN 21, 2021
Earth & The Environment
Monitoring elephant populations with satellites and deep learning
JAN 21, 2021
Monitoring elephant populations with satellites and deep learning
An exciting development in conservation comes in the form of an automated system that captures high-resolution satellite ...
Loading Comments...