MAY 15, 2017 8:13 AM PDT

Making fertilizer from thin air

Ever since the Haber–Bosch process of artificial nitrogen fixation revolutionized the agricultural world, the race to continue developing more and more efficient fertilizers has been on. That race just picked up speed as farmers may soon be able to create fertilizers out of thin air.

Bhaskar S. Patil, from the Eindhoven University of Technology, has developed a reactor that coverts nitrogen from the atmosphere into NOx, the raw material for fertilizer. This strategy is potentially five times as efficient as current methods and could change the way small farmers run their farms.

Looking for alternative ways of producing ammonia and nitrogen oxides, Patil built two reactors: the Gliding Arc (GA) reactor and the Dielectric Barrier Discharge (DBD) reactor. The GA reactor proved to be most successful at producing nitrogen oxides. Science Daily explains: “In this reactor, under atmospheric pressure, a plasma-front (a kind of mini lightning bolt) glides between two diverging metal surfaces, starting with a small opening (2 mm) to a width of 5 centimeters. This expansion causes the plasma to cool to room temperature. During the trajectory of the 'lightning', the nitrogen (N2) and oxygen (O2) molecules react in the immediate vicinity of the lightning front to nitrogen oxides (NO and NO2).”

Patil was able to achieve an energy consumption level of 2.8 MJ/mole with the GA reactor. That is a step up from the other methods that use around 0.5 MJ/mole. “With the theoretical minimum of Patil's reactor, however, being that much lower (0.1 MJ/mole),” reports Phys, “…in the long term this plasma technique could be an energy-efficient alternative to the current energy-devouring ammonia and nitrate production.”

The most exciting aspect of Patil's method is that it does not need any raw materials and production can rely on renewable energies. His model is ideal for farms in rural regions that have little or no access to power grids.

This method is well suited for small rural farms. Photo: JAM Canada

Further research is still needed to make this method an industrial reality. Currently the German Evonik Industries, is continuing to enhance the reactor. The hope is that in addition to small farms, the technology could be utilized to improve growth of plants in greenhouses and to store sustainable energy in liquid fuels.

Furthermore, this breakthrough also comes as a positive light for reducing carbon dioxide emissions that spur climate change. Producing ammonia (NH3) and nitrogen oxide (NOx) requires a lot of energy and this process makes up about 2% of all global CO2 emissions. Changing our reliance on such high-energy processes to generate fertilizers would help curb our CO2 emissions worldwide.

Sources: Science Daily, Phys

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
OCT 26, 2020
Cell & Molecular Biology
When Exposed to Estrogen, Fish Generate Fewer Males
OCT 26, 2020
When Exposed to Estrogen, Fish Generate Fewer Males
Life on earth relies on clean water, something that is becoming more scarce. Researchers have found that if water is con ...
NOV 13, 2020
Earth & The Environment
What the cylones of the past can tell us about the cyclones of the future
NOV 13, 2020
What the cylones of the past can tell us about the cyclones of the future
Research from the Woods Hole Oceanographic Institution (WHOI) has reconstructed the patterns of historical tropical cycl ...
NOV 23, 2020
Plants & Animals
Can Kelp Help Reduce Acidification in the Ocean?
NOV 23, 2020
Can Kelp Help Reduce Acidification in the Ocean?
Our oceans are becoming more acidic; their pH is going down as they absorb CO2 from Earth's atmosphere. It's thought tha ...
JAN 12, 2021
Earth & The Environment
What will become of the sharks?
JAN 12, 2021
What will become of the sharks?
What will be the future of sharks? These animals that have been around for 450 million years are in danger, threatened b ...
JAN 13, 2021
Plants & Animals
Dwarf Giraffes Observed for the First Time Ever
JAN 13, 2021
Dwarf Giraffes Observed for the First Time Ever
The name “dwarf giraffe” certainly seems like an oxymoron, which is why scientists were shocked to observe t ...
JAN 22, 2021
Cell & Molecular Biology
A New Form of Lab-Cultivated Meat is Created
JAN 22, 2021
A New Form of Lab-Cultivated Meat is Created
Scientists have engineered a meat product that can be cultivated in a lab, and are suggesting that it contains more text ...
Loading Comments...