MAY 30, 2017 6:32 AM PDT

Generating Power from Estuaries

Generating energy from estuaries, the meeting of rivers and oceans, is possible because of the difference in salt concentrations in the water. In fact, scientists estimate that this energy potential is so strong that we could fulfill up to 40% of the world’s electricity needs using this mechanism. However up until now, the existing methods, pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), have been lacking. But never fear, researchers from Penn State have developed a method which combines the strategies of RED and CapMix in an electrochemical flow cell in order to produce greater amounts of energy more efficiently.

Diagram Source: Scientific American

Above you can see how the flow cell works. Two channels are separated by an anion-exchange membrane, with a copper hexacyanoferrate electrode in each channel. Graphite foil was to collect the current. From there, one channel is given synthetic seawater and the other channel is given synthetic freshwater. The cell is able to recharge when the water’s flow switches.

"There are two things going on here that make it work," said Christopher Gorski, assistant professor in environmental engineering at Penn State. "The first is you have the salt going to the electrodes. The second is you have the chloride transferring across the membrane. Since both of these processes generate a voltage, you end up developing a combined voltage at the electrodes and across the membrane."

The team determined that stacking multiple cells was able to boost electricity production. As reported in Environmental Science & Technology, with stacked cells, the system produced 12.6 watts per square meter. Compared to previously reported outputs for RED (2.9 watts per square meter) and PRO (9.2 watts per square meter), this combined method is able to generate more power but without some of the problems that the other strategies struggle with. 

"What we've shown is that we can bring that power density up to what people have reported for pressure retarded osmosis and to a value much higher than what has been reported if you use these two processes alone," Gorski said.

Nevertheless, a lot more investigation is needed before deciding if this successful prototype could work outside of the lab. Determining if the method is cost-effective and scalable and how it would affect estuary ecosystems is critical before moving on with this technology.

Where the river meets the sea. Photo: Alamance-Burlington School System

Sources: Scientific American, Pennslyvania State University

About the Author
BA Environmental Studies
Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUL 03, 2022
Space & Astronomy
Canadian microbes could give scientists a blueprint for lifeforms on the Red Planet, and possibly elsewhere
JUL 03, 2022
Canadian microbes could give scientists a blueprint for lifeforms on the Red Planet, and possibly elsewhere
New research from McGill University has discovered alive and active microbes in Canadian permafrost that could provide a ...
JUL 04, 2022
Earth & The Environment
Space tourism growth could lead to climate change effects greater than the aviation industry
JUL 04, 2022
Space tourism growth could lead to climate change effects greater than the aviation industry
Space tourism is becoming a booming industry thanks to private companies like Virgin Galactic, Blue Origin, and SpaceX. ...
JUN 30, 2022
Cannabis Sciences
When Weed Ages
JUN 30, 2022
When Weed Ages
What happens when cannabis ages? How does the potency and quality change, if at all?
AUG 05, 2022
Earth & The Environment
Past extinction events due to temperature changes might not repeat for the future
AUG 05, 2022
Past extinction events due to temperature changes might not repeat for the future
In a recent study published in Biogeosciences, Professor Emeritus Kunio Kaiho of Tohoku University conducted a quantitat ...
AUG 08, 2022
Genetics & Genomics
This Weed is a Super Plant, Providing Insight Into Drought Tolerance
AUG 08, 2022
This Weed is a Super Plant, Providing Insight Into Drought Tolerance
You may have seen a 'super plant' growing in between the cracks of sidewalks. Portulaca oleracea is commonly known as pu ...
AUG 10, 2022
Infographics
Arachnophobia: World's Deadliest Spiders
AUG 10, 2022
Arachnophobia: World's Deadliest Spiders
Spiders are one of nature's most incredible creatures, and there are millions of spider enthusiasts worldwide.
Loading Comments...