APR 02, 2015 6:34 AM PDT

As Forests Go, So Goes The Food

New research published in Nature Communications provides insight into how large-scale deforestation could impact global food production by triggering changes in local climate. In the study, researchers from the United States and China zero in on albedo (the amount of the sun's radiation reflected from Earth's surface) and evapotranspiration (the transport of water into the atmosphere from soil, vegetation, and other surfaces) as the primary drivers of changes in local temperature.
Evapotranspiration data via MODIS/NASA
The research is the first global analysis of the effects of forest cover change on local temperature using high-resolution NASA global satellite data. A peer-reviewed paper based on the study,

"Local cooling and warming effects of forests based on satellite observations," hints at how land use policies could have economic implications from forest to farmland.
"Understanding the precise mechanisms of forest-generated warming or cooling could help regional management agencies anticipate changes in crop yields. Together with a knowledge of other ecological factors, this information can help decision makers and stakeholders design policies that help to sustain local agricultural practices," said Safa Motesharrei, co-author of the paper and a systems scientist at the National Socio-Environmental Synthesis Center (SESYNC).

Agriculture--specifically, converting forest cover to plantations for oil palm, soy, rubber, coffee, tea, rice, and many other crops--is widely believed to be one of the main causes of deforestation. Such change in land cover could drive a rise or fall in local temperature by as much as a few degrees. This kind of fluctuation could substantially impact yields of crops that are highly susceptible to specific climate conditions, resulting in harvests that are less productive and less profitable.

The authors say it underscores the need for a holistic understanding of forestry activities on local climate. They point out that while local impacts of forest cover change are some of the most relevant for management practices, they're also the most poorly understood.

The path to understanding these local impacts, the researchers say, is through albedo and evapotranspiration. Forests have a darker surface than, for example, an agricultural field--forests therefore have a lower albedo, which means less solar radiation is reflected and more is absorbed. This phenomenon causes warming. On the other hand, forests absorb more rainwater and transpire it as water vapor later. This phenomenon, called evapotranspiration, causes cooling.

"These two competing biophysical effects could determine whether--at a specific location or during a specific time of the day or season of the year--a forest could cause local cooling or warming. And, by extension, whether clearing a forest could lead to a rise or fall in local temperature," explained Yan Li of Peking University, lead author of the study and visiting climate scientist at the University of Maryland.

The study addresses questions that have been previously impossible to answer without these global satellite data. Earlier research has studied the effects of forest cover on temperature using field observations or global climate models. Because field work can be expensive, time-intensive, and logistically difficult, field measurements are generally available for only limited areas. These data are therefore difficult to scale up to develop a global picture. And because climate models require immense computational resources to run, they're often unable to provide focused local information with reliable precision.

The satellite data used in the study--collected by NASA's Moderate Resolution Imaging Spectroradiometer, or MODIS--provide the best of both worlds: information that is rich in detail and global in coverage. As a result, the researchers could effectively zoom in and back out again to analyze the same phenomena everywhere around the world.

"We knew before that forests have an impact on temperature. But this study has provided a precise, quantitative estimation of the impact of forests depending on the geographical location, tracing it back to the changes in albedo and evapotranspiration," said Eugenia Kalnay, co-author of the paper and a Distinguished University Professor at the University of Maryland.

As rates of deforestation climb and shifts in local climate become more pronounced, the need to understand the relationship between forest cover change and temperature will become more urgent. We have already lost 130 million hectares--an area roughly equivalent to twice the size of France--of the world's forests just in the past decade, according to the Food and Agriculture Organization of the United Nations. The more forests we clear, the more we increase risks for food production due to changes in temperature.

(Source: University of Maryland)
About the Author
English
I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
OCT 11, 2022
Earth & The Environment
Potential For 24/7 Solar Power from Solar Harvesting
OCT 11, 2022
Potential For 24/7 Solar Power from Solar Harvesting
In a recent study published in Physical Review Applied, a team of researchers from the University of Houston reports on ...
OCT 26, 2022
Plants & Animals
Lowering the Carbon Footprint of Pumpkin Farming
OCT 26, 2022
Lowering the Carbon Footprint of Pumpkin Farming
The most ubiquitous symbol of Halloween? A bright orange pumpkin. Whether you’re carving them, decorating them, or ...
OCT 29, 2022
Microbiology
Grad Student Highlights: Kirstin Cutshaw (Florida Institute of Technology)
OCT 29, 2022
Grad Student Highlights: Kirstin Cutshaw (Florida Institute of Technology)
Kirstin Cutshaw is a Biological Sciences PhD student at the Florida Institute of Technology (FIT) whose research focuses ...
OCT 26, 2022
Cell & Molecular Biology
Researchers Reveal Genetic 'Borgs' in the Microbial World
OCT 26, 2022
Researchers Reveal Genetic 'Borgs' in the Microbial World
If you're a Star Trek fan, you've heard of the Borg, a hive-mind that can assimilate others as they seek to take control ...
NOV 18, 2022
Earth & The Environment
Grad Student Highlights: Marc Berghouse (University of Nevada, Reno)
NOV 18, 2022
Grad Student Highlights: Marc Berghouse (University of Nevada, Reno)
This interview series is focused on the graduate student experience across all STEM fields that allows them to get their ...
NOV 17, 2022
Cannabis Sciences
Most Common Side Effects from Consuming Too Much Weed
NOV 17, 2022
Most Common Side Effects from Consuming Too Much Weed
What happens when you ingest too much THC? Whether you smoke, vape, or consume edibles, here's what to expect
Loading Comments...