JUN 20, 2018 07:42 PM PDT

The Cause of a Rare Neurological Disease is Identified

WRITTEN BY: Carmen Leitch
2 4 203

The causes of rare diseases can be difficult to uncover. A recent investigation by scientists at UT Southwestern involved over 1,200 participants and sought to find the gene responsible for a debilitating brain disease that causes blindness and paralysis, called neuromyelitis optica (NMO). The scientists are hopeful that their work, which was published in Nature Communications, will lead to good treatments for the disease. It also demonstrates the power that DNA storage banks have to inform our understanding of unusual disorders.

 "This outcome shows that doing in-depth research pays off, and more studies like this may be needed to find the problem behind other rare conditions," said Dr. Benjamin Greenberg, an internationally recognized myelitis expert at UT Southwestern's Peter O'Donnell Jr. Brain Institute. "By taking a rare disease and doing more than just reading every third or fourth page of genetic code, we have modeled NMO in a much more accurate way."

Patients with NMO have a problem with their immune system that causes it to attack cells in the spine and optic nerve. While many of those affected are able to regain function with physical therapy and medication, many others are misdiagnosed. When the disease is not correctly identified, relapses and additional problems can happen, and it might be fatal.

By using whole-genome sequencing, the scientists uncovered a change in a gene that was linked to an increase in the risk of the disease. The gene makes a protein that attaches to antibodies; the protein can then interfere with what the antibody is bound to, which is often pathogenic microbes. In the NMO disorder, the antibodies improperly attach to places in the nervous system instead. 

This genetic study could be considered along with clinical data to identify the patients that won’t benefit from typical treatments.

"Some patients go into remission and others don't, yet we haven't known why," Dr. Greenberg explained. "What we can do now is look at the DNA and determine if that has anything to do with why drugs are not working."

 NMO is one of the least common autoimmune diseases that impact the spinal cord and brain. Because so few people are affected, it does not attract a lot of research attention. This work has demonstrated the value of researching rare disorders, however.  

NMO is among several thousand rare diseases that cumulatively affect 30 million Americans yet individually don't involve large enough populations to attract widespread research efforts. As little as 0.3 percent of every one hundred thousand Americans have NMO - making it one of the most uncommon autoimmune diseases involving the brain and spinal cord. 

"To target a disease as rare as this, to put this much technology behind trying to understand the disease - it hasn't been done before," Dr. Greenberg said. "This study has given insights into this condition that aren't just new but are distinctly different from other studies."

Sources: AAAS/Eurekalert! Via UT Southwestern Medical Center, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 25, 2018
Genetics & Genomics
APR 25, 2018
Advances in Cancer Research Through Organoids
Researchers have been using a new tool in biomedical research to more closely mimic human biology - mini models of human organs, called organoids.
MAY 01, 2018
MAY 01, 2018
Impede Telomerase Activity & Inhibit Cancer Growth?
Telomeres are shortened with each cell division except when telomerase is present; cancer cells restore telomerase activity to keep their telomeres from shortening and the cell from dying.
JUN 15, 2018
JUN 15, 2018
A Fast-acting Vaccine for Cholera
Worldwide, bacteria that causes fast-spreading cholera kills anywhere from 21,000 to 143,000 people every year.
JUL 03, 2018
Plants & Animals
JUL 03, 2018
'Self-destruct switch' may let plants turn genes on and off quickly
The repressive structures that plants use to keep genes turned off involves a potential self-destruct switch, a new study suggests. The findings offer insi
JUL 10, 2018
JUL 10, 2018
New Tools in the CRISPR Kit
Some diseases are caused by a single gene mutation. Others are far more complex.
JUL 11, 2018
Genetics & Genomics
JUL 11, 2018
Humans Didn't Arise From One African Group, but Many
The story of human evolution is still being written.
Loading Comments...