OCT 13, 2018 9:52 AM PDT

A Better Way to Analyze Epigenetic Tags

WRITTEN BY: Carmen Leitch

Our genes determine our physiological characteristics, and for now anyway, we can’t change them. But many different kinds of small modifications to the genome can change how and when our genes are turned on and off. Researchers are trying to learn more about how those changes, epigenetic modifications or tags, are related to disease. Scientists at the University of Pennsylvania have now created a better way to analyze epigenetic tags that may help us diagnose diseases including cancer sooner; their work has been reported in Nature Biotechnology.

Image credit: Modified from Maxpixel,net

"We're hopeful that this method offers the ability to decode epigenetic marks on DNA from small and transient populations of cells that have previously been difficult to study, in order to determine whether the DNA is coming from a specific tissue or even a tumor,” explained study co-senior author Rahul Kohli, MD, Ph.D., an assistant professor of Biochemistry and Biophysics, and Medicine.

Epigenetics is a term that was coined many years before scientists knew much about genes. In the seventies, researchers found the first epigenetic modification - methyl groups added to genes. They learned that the methylation state of a gene could have an impact on its expression. Work continued, and the modern understanding of epigenetics was developed in the mid-nineties and was refined over about a decade. In that time, researchers developed a few ways to study epigenetic tags. One common method relies on bisulfite, a useful but damaging chemical that is also unable to reveal epigenetic modifications to one nucleotide base - cytosine.
 
For this work, the researchers took advantage of a natural class of enzymes used in the immune system, which are known to be convertible for lab purposes. These enzymes, APOBEC DNA deaminases, can act in place of bisulfite, without doing any damage. The tool is also able to tell the difference between two common types of epigenetic tags, hydroxymethylation and methylation. 

"This technological advance paves the way to better understand complex biological processes such as how the nervous system develops or how a tumor progresses," said co-senior author Hao Wu, Ph.D., an assistant professor of Genetics. 

With their new technique, the team found that they needed 1,000 times less DNA to analyze the epigenetic tags in one type of neurons compared to previous bisulfate-dependent methods. 

"We were able to show that sites along the genome that appear to be modified are in fact very different in terms of the distribution of these two marks," Kohli added. "This finding suggests important and distinctive biological roles for the two marks on the genome."

Learn more about how epigenetic tags have been linked to human development and disease from the video.


Sources: Science Daily via University of Pennsylvania School of Medicine, Cold Spring Harbor Perspectives in Biology, Biorad, Nature Biotechnology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 03, 2020
Microbiology
FEB 03, 2020
The Switch Controlling the Stage of a Common Parasite
The parasite Toxoplasma gondii is thought to infect from one-quarter to one-third of the global population....
FEB 07, 2020
Genetics & Genomics
FEB 07, 2020
Mutations That Lead to Cancer May Occur Decades Before Diagnosis
As our cells age or divide, errors can accumulate in the genome they carry, which can lead to cancer, and a variety of environmental and genetic factors ca...
FEB 17, 2020
Microbiology
FEB 17, 2020
Giant Viruses Blur the Line Between Life and Non-Life
Bacteriophages, also known as phages, are more complex than many viruses that we know of, and often carry large genomes....
FEB 23, 2020
Genetics & Genomics
FEB 23, 2020
Revealing More About the Genetic Mechanisms Underlying Down Syndrome
Down syndrome impacts around 6,000 live births in the US every year. Around 95% of affected individuals have a type called trisomy 21....
MAR 22, 2020
Genetics & Genomics
MAR 22, 2020
The Evolutionary Origins of the Human Hand
An ancient fish fossil has given researchers new insight into how fish fins eventually evolved into human hands....
MAR 25, 2020
Technology
MAR 25, 2020
What is eDNA?
What exactly is eDNA? It is environmental DNA that has underwent the next-generation sequencing and that has been ‘barcoded’ in a way that can ...
Loading Comments...