OCT 16, 2018 6:20 PM PDT

Lab-grown Neurons Help Uncover the Genetic Changes Underlying Mental Illness

WRITTEN BY: Carmen Leitch

Developing therapeutics that will effectively relieve mental illness means understanding what is causing those disorders in the first place. To that end, scientists at the University of California Los Angeles have now created a way to study how genetics plays a part in psychiatric disease. By growing brain cells in the lab, they investigated how neurons are assigned specific roles; they determined that the expression of certain genes change during neural development. The findings were reported in Biological Psychiatry.

Image credit: Max Pixel

"Our approach allowed us to model how multiple regions in the genome that increase risk for psychiatric disorders act in concert to affect molecular and cellular function that is relevant for neurodevelopment. This is exciting as it provides a novel framework to study genetic risk of psychiatric disease and shows that we can capture parts of the heritability of schizophrenia in a lab model system," said first author and graduate candidate Anil Ori.

Scientists have had a hard time deciphering how genes contribute to the heritability and physiology of schizophrenia because so many genes are involved, and some contribute in only a small way. The genetics of psychiatric disorders is complex.

"[Large-scale population studies] have shown that psychiatric disorders are heritable traits in which hundreds if not thousands of genes throughout the human genome contribute to disease risk," explained senior author Roel Ophoff, Ph.D.  When small changes in many genes create an impact together, it’s called polygenic risk.

"The translation of polygenic risk to neurobiology is one of the major scientific challenges for psychiatry in this era. This paper highlights a novel approach to begin this work," said John Krystal, MD, Editor of Biological Psychiatry.

The investigators followed the expression of many genes during the development of human neural stem cells. They integrated genome-wide schizophrenic risk data with the gene expression profiles, finding that genes with differential expression and increased expression during development are linked to psychiatric disorders. Of the diseases, their strongest evidence was for schizophrenia risk. 

This work can indicate who the major players are in disease risk, said the authors. In this case, the genes that were linked to schizophrenia normally function in synapses, which are connections between neurons where communication takes place.

"Establishing this platform for further study has great potential benefit," said Ori. Now that the study has established in vitro neural development as a model for psychiatric disease, researchers can tweak the model to investigate how different environments might affect disease risk, and use this to understand the biology of mental illnesses.

"As large-scale genetic studies of psychiatric disorders will continue to expand, our study provides a valuable genomic tool to help investigate and understand how risk that is distributed across the genome contributes to the etiology of psychiatric disorders," said Ophoff.

The video above features a lecture by Ophoff on the Genetics of Psychiatric Disorders.

Sources: AAAS/Eurekalert! via Elsevier News, Biological Psychiatry

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 28, 2022
Microbiology
Humans and Our Gut Microbes Evolved Together
SEP 28, 2022
Humans and Our Gut Microbes Evolved Together
We each carry thousands of different species of microorganisms in our gastrointestinal tracts, and that gut microbiome h ...
OCT 28, 2022
Coronavirus
The New GenElute™-E Viral RNA/DNA Kit
OCT 28, 2022
The New GenElute™-E Viral RNA/DNA Kit
Three Advantages: Reduction in plastic use Time savings Better results Nucleic acids play an essential role in the funct ...
NOV 02, 2022
Clinical & Molecular DX
New Genetic Variants Identified as Risk Factors for Ovarian Cancer
NOV 02, 2022
New Genetic Variants Identified as Risk Factors for Ovarian Cancer
Ovarian cancer is a complex disease resulting from mutated cells in the ovaries. As the cells multiply, they can invade ...
NOV 04, 2022
Cell & Molecular Biology
Copy Number Variation - An Important Aspect of Human Genetics
NOV 04, 2022
Copy Number Variation - An Important Aspect of Human Genetics
We learn that we inherit two copies of every gene, one from each of our parents, but the story is a bit more complex.
NOV 09, 2022
Genetics & Genomics
What happened to the Neandertals?
NOV 09, 2022
What happened to the Neandertals?
New research suggests that interbreeding, not violence, may have caused the Neandertal extinction.
NOV 17, 2022
Plants & Animals
Creating living cells from dead Sumatran rhinoceros' tissue
NOV 17, 2022
Creating living cells from dead Sumatran rhinoceros' tissue
The Sumatran rhinoceros are considered a critically endangered species, with an estimated 80 or fewer Sumatran rhinos al ...
Loading Comments...