NOV 01, 2018 2:52 PM PDT

Genetic Risk Factor for Erectile Dysfunction is Discovered

WRITTEN BY: Carmen Leitch

Scientists have discovered a gene that is connected to erectile dysfunction for the first time. This work may help improve therapeutics for the problem, which commonly impacts middle-aged and elderly men. Current treatments aren’t helpful in many cases. The work, which identified the region or locus around the SIM1 gene as a potential cause, has been reported in the Proceedings of the National Academy of Sciences (PNAS) and is outlined in the video.

"Identifying this SIM1 locus as a risk factor for erectile dysfunction is a big deal because it provides the long sought-after proof that there is a genetic component to the disease," said the study's lead author, Eric Jorgenson, Ph.D., a research scientist at Kaiser Permanente Northern California's Division of Research. "Identifying the first genetic risk factor for erectile dysfunction is an exciting discovery because it opens the door for investigations into new, genetic-based therapies."

Erectile dysfunction could be caused by hormonal, neurological or vascular changes. It’s been suggested that genes are a factor in around a third of cases. Ruling out risk factors like body mass index, this work showed that changes in the SIM1 locus are linked to erectile dysfunction. The researchers also connected the locus to the regulation of sexual function.

Large databases made this work possible. One contained data from  36,648 men that were part of the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, which is affiliated with the Kaiser Permanente Research Bank. The findings from this dataset were then compared to information from 222,358 men in the U.K. Biobank.

Variations in the genetic sequence of the SIM1 locus increased the risk of erectile dysfunction by 26 percent. 

"This significant advance in our understanding of erectile dysfunction is made possible by the unique ability of the Kaiser Permanente Research Bank to link detailed questionnaires, electronic health records, and genetic data on such a large population," said the study's senior author, Stephen Van Den Eeden, PhD, a research scientist at the Division of Research.

Image credit: Pixabay

Erectile dysfunction research relies on self-reporting, which can confound the research. The scientists were able to confirm that SIM1 played a role regardless of clinical diagnosis of the disorder, self-reporting, or prescription history.

The SIM1 gene has a role in a signaling pathway that relates to body weight and sexual function. The variations that affect erectile dysfunction are not in, but are very close to that gene. This area of the genome changes how the gene is regulated; it contains a promoter and an enhancer for SIM1

A gene could be thought of as a light bulb, Jorgenson explained, and the promoter is akin to its switch, while the enhancer is like the fuse box. The erectile dysfunction risk locus shows enhancer activity and physically interacts with the SIM1 promoter, so it probably influences SIM1 gene expression. It can turn it on and off when necessary.

"The different bits of evidence that we present in this study fit together like puzzle pieces to create a picture of how the SIM1 locus can control erectile function," Jorgenson said.

SIM1 is now a potential therapeutic target. "This study points to a new research direction for erectile dysfunction that could help us identify other key genetic variants that trigger the disease and lead to investigations to better understand the precise mechanisms by which they operate," said study co-author Hunter Wessells, MD, chair of urology at the University of Washington School of Medicine. "Hopefully, this will translate into better treatments and, importantly, prevention approaches for the men and their partners who often suffer silently with this condition."


Sources: AAAS/Eurekalert! Via Kaiser Permanente, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 09, 2021
Microbiology
Bacteria Can Read Genes Forwards or Backwards
MAY 09, 2021
Bacteria Can Read Genes Forwards or Backwards
One of the most basic processes in life in the creation of proteins from mRNA molecules, which are transcribed from DNA. ...
MAY 09, 2021
Genetics & Genomics
Another Neurodevelopmental Disorder is Discovered
MAY 09, 2021
Another Neurodevelopmental Disorder is Discovered
Researchers are identifying more rare disorders because of advances in genetic sequencing technologies, which have made ...
MAY 17, 2021
Neuroscience
Genetic Changes in Brain Immune System May Cause Psychosis
MAY 17, 2021
Genetic Changes in Brain Immune System May Cause Psychosis
The exact biological mechanisms behind psychosis, a condition that changes one’s perception of reality and often i ...
MAY 20, 2021
Genetics & Genomics
The rhAmpSeq™ CRISPR Analysis System for next-generation sequencing analysis of CRISPR edits
MAY 20, 2021
The rhAmpSeq™ CRISPR Analysis System for next-generation sequencing analysis of CRISPR edits
CRISPR genome editing generates double-stranded breaks (DSBs) in genomic DNA and is a targeted method by which to achiev ...
MAY 24, 2021
Genetics & Genomics
Lead Exposure Can Lead to Epigenetic Changes
MAY 24, 2021
Lead Exposure Can Lead to Epigenetic Changes
In Brazil, automotive battery plants use lead to make their products, exposing workers to the element, which is abundant ...
JUN 16, 2021
Microbiology
DNA - It's What's for Dinner (For Some Bacteria)
JUN 16, 2021
DNA - It's What's for Dinner (For Some Bacteria)
There may be a trillion species of microbes on the planet, so clearly there's still a lot we don't know about these micr ...
Loading Comments...