NOV 11, 2018 6:02 PM PST

Bee Study Connects Social Behavior with Gene Variants

WRITTEN BY: Carmen Leitch

Researchers at Princeton University used a special kind of bee that can live in either social communities or isolation, as a research model. Their model the sweat bee enabled them to demonstrate a link between small variations in certain genes and social behavior. Some of the genes identified in the research have already been associated with autism in people. The study is outlined in the following video and has been reported in Nature Communications.

“Bees have complex social behaviors, and with this species of bee, we can directly compare individuals that live in social groups to those that don’t live in social groups,” explained research leader Sarah Kocher, an assistant professor of ecology and evolutionary biology and the Lewis-Sigler Institute for Integrative Genomics at Princeton. “We can ask: ‘What are the fundamental differences between a social and nonsocial animal?’”

To begin to answer that question, the research team looked for gene variants that play a role in sociability. One variation was found in a gene called syntaxin 1a, which is a member of a gene family that helps control how chemical messengers are released in the brain. 

The researchers found almost 200 SNPs or gene variations that were associated with social behaviors in sweat bees. Of those variations, 21 were in or close to six genes that have been linked to autism in people.

When Kocher began to study sweat bees, few other researchers had any information about them. The bees make for good subjects in social behavior studies because some naturally keep to themselves while others are social, said Kocher. The social bees have in a hierarchical society with a nest in the ground, and the nonsocial type lives on its own.

After studying with an entomologist that was one of the few experts on sweat bees, Cecile Plateaux-Quenu, Kocher brought the bees back to the laboratory. There, she sequenced the genomes of hundreds of Lasioglossum albipes sweat bees from areas that were home to both solitary and social types. Kocher and colleagues then looked for patterns in the genetic data. 

They found that changes in several genes influence social activity in these bees. The majority of the variations they found were not located in portions of the genome that code for protein. They tended to be in places that enhance gene activity. 

Social activity is likely the product of many factors, including a variety of different genes. This research does provide evidence that genes play a significant role in behavior, however. Genes also have a major impact on the development of the nervous system, including the brain. In the early years of life, the connections between neurons in the human brain are pruned, a process in which genes play another part.

While it seems that autism is probably caused by different things, genes have been implicated. Research last year also found an association between genes in bees and autism-linked genes. That study used honey bees, which are social, while sweat bees can be social or nonsocial, noted Kocher.

“It came as a surprise that we came across the same results independently,” Kocher said. “It suggests the existence of a core set of genes that play an important role in shaping social behavior across different species,” she added.


Source: Princeton University, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 08, 2020
Microbiology
JAN 08, 2020
Researchers Discover Many New Viruses That are Carried by Insects
Zoonotic diseases are caused by infectious microorganisms like bacteria or viruses, and are passed between animals, including humans....
JAN 20, 2020
Genetics & Genomics
JAN 20, 2020
Braveheart RNA Structure is Revealed For the First Time
Protein-coding genes only make up a small part of the genome. Much of the rest may contain long, non-coding RNA sequences....
JAN 28, 2020
Genetics & Genomics
JAN 28, 2020
Developing a Gene Therapy to Treat Duchenne Muscular Dystrophy
Because of a genetic mutation, people that have Duchenne muscular dystrophy lack functional copies of a protein called dystrophin....
FEB 07, 2020
Genetics & Genomics
FEB 07, 2020
Mutations That Lead to Cancer May Occur Decades Before Diagnosis
As our cells age or divide, errors can accumulate in the genome they carry, which can lead to cancer, and a variety of environmental and genetic factors ca...
FEB 03, 2020
Neuroscience
FEB 03, 2020
Genetic Characterization of Bipolar Disorders, Major Depressive Disorder
Mood disorders, like Bipolar, Major Depressive Disorder, and Schizophrenia, among others, are difficult to define clinically.  Unlike disorders that a...
MAR 17, 2020
Genetics & Genomics
MAR 17, 2020
Targeting RNA With CRISPR
Researchers screened thousands of target molecules to find the most effective targets, and have made their data openly available....
Loading Comments...