NOV 24, 2018 7:26 AM PST

How Fish can Teach us About Mending a Broken Heart

WRITTEN BY: Carmen Leitch
Our world hosts some incredible organisms, some of which might teach humans more about our own biology or how we can develop therapeutics to treat our diseases. One such animal is the Mexican cavefish (Astyanax Mexicanus). About 1.5 million years ago, these fish were living in the rivers of Northern Mexico, washing into caves with seasonal rains that eventually stopped. That separated the fish into cave-dwelling and river-dwelling populations, which eventually took on different features - the Astyanax Mexicanus fish that still live on the river surface can regenerate their hearts after an injury, while one cave-dwelling type cannot.
 

 

A research team led by Dr. Mathilda Mommersteeg at the University of Oxford decided to compare the genomes of these two different types of similar fish to find the genetic reasons why one can still regenerate its heart tissue. The genes that are involved with heart repair would probably be missing from the cavefish. The findings from their study have been published in Cell Reports and are outlined in the video.
 
"Millions of years ago, some surface fish living in rivers flooded into caves, became trapped when river levels retreated and lost their eyes and pigment to adapt to cave life," explained co-senior author Mathilda Mommersteeg, a developmental scientist at the University of Oxford. "We have discovered that, like zebrafish, the river surface fish regenerate their heart, while some cavefish cannot and form a permanent scar. We introduce the Mexican cavefish as a new model for heart regeneration research."
 
Indeed, the researchers were able to find three regions in the fish that they suspected were part of heart regeneration. There were two genes in particular: lrrc10 and caveolin, which were far more active in the river fish. 
 
"Quantitative trait locus analysis (described in the video below) is a method that has allowed us to find out what part of all the surface fish DNA is most crucial for heart regeneration," said co-senior author Yoshiyuki Yamamoto, a developmental biologist at University College London. "We have identified three regions in the DNA that contain genes that make the difference between regeneration or scarring after heart injury."
 
Scientists have already linked the lrrc10 gene with a human heart disorder, dilated cardiomyopathy (DCM). Mouse studies have indicated that the gene has a role in how the heart deals with mechanical stress
 
For this work, the researchers deactivated lrrc10 in zebrafish and found that the fish lost its ability to repair heart damage completely.
 
"The next step is to find out what the reason is that surface fish can regenerate their hearts, but cavefish cannot," said Mommersteeg. "What is it that happened during their adaptation to cave life that stopped them from regenerating their hearts?"
 

 

 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 16, 2020
Genetics & Genomics
MAR 16, 2020
How the Genetic Material in Sperm is Unpacked During Fertilization
The genetic material from a sperm and an egg merges to form a new human genome, and now we know more details about the p ...
MAR 18, 2020
Genetics & Genomics
MAR 18, 2020
Finding a Treatment for Fetal Alcohol Spectrum Disorder
When developing fetuses are exposed to any amount of alcohol, they are at risk for a variety of irreversible birth defec ...
MAR 24, 2020
Genetics & Genomics
MAR 24, 2020
Crumpling Graphene Makes It an Ultra-Sensitive Biosensor
Liquid biopsies often need to make many copies of RNA or DNA before they are detectable. New research aims to change tha ...
MAY 07, 2020
Genetics & Genomics
MAY 07, 2020
Will the Next Outbreak Come From Cattle?
Many species of Campylobacter bacteria are infectious and can cause a disease called campylobacteriosis in animals and p ...
MAY 24, 2020
Genetics & Genomics
MAY 24, 2020
How CRISPR Can Aid in Wildlife Conservation
Since it was developed, researchers have modified and applied the CRISPR gene editing technology in many different ways.
MAY 26, 2020
Neuroscience
MAY 26, 2020
Alzheimer's Gene Doubles Risk of Severe COVID-19
Researchers from the University of Exeter, England, and the University of Connecticut have found that people carrying fa ...
Loading Comments...