DEC 03, 2018 08:19 PM PST

Reducing the Potential for Negative Side Effects in CRISPR

WRITTEN BY: Carmen Leitch

About a decade ago, molecular research and genetic engineering were revolutionized with the introduction of the CRISPR gene editing system, which is a kind of molecular scissors that cut the genome at a particular location that is specified by a molecule called a guide RNA. Different guide RNAs can be designed for different genes. The rapid and widespread adoption of the technology, which is described further in the video below, led to the discovery of some drawbacks, including problems with accuracy. Many research groups have been working to refine this technology.

In CRISPR, a genome-cutting enzyme called an endonuclease is targeted to a certain spot in the genome by the guide RNA. Often, the endonuclease that's employed is one called Cas9. There are others, though. One alternative is Cas12a, which was used in a new report published in Cell by scientists at the Novo Nordisk Foundation Center for Protein Research. They have characterized how Cas12a works on the molecular level. Now it will be possible to make it highly specific and limit the number of unintended and undesirable off-target impacts.

“If we compare CRISPR to a car engine, what we have done is make a complete 3D map of the engine and thus gained an understanding of how it works. This knowledge will enable us to fine-tune the CRISPR engine and make it work in various ways - as a Formula 1 racer as well as an off-road truck,” said Professor Guillermo Montoya from the Novo Nordisk Foundation Center for Protein Research.

In this study, the scientists used cryo-electron microscopy to analyze how Cas12a does its job. The team was able to image the molecule in different conformations as it cut strands of DNA. The team added another technique called single-molecule FRET to their study. It allowed them to observe how the molecules moved, and the sequence of steps each protein made. The researchers found that three parts of the CRISPR tool have to shift shape so to properly cut the DNA.

“Our new study shows the precise series of events in the genome leading to gene editing. These three "pieces" that change, work like airport security checks. You have to complete all checks and in the right order to proceed,” explained Associate Professor Nikos Hatzakis of the Department of Chemistry and the Nano-Science Center.

This work may help explain why CRISPR often has unintended effects on the genome, suggested the researchers. After the strand of DNA gets cut, the three so-called security checks stay open. That causes the whole process to take longer than desired; the cellular machinery keeps going and can generate additional edits.

The researchers are hopeful that the data revealed in this research will stop these unwanted effects and can make gene editing more accurate immediately. You can check out a video from the University of Copenhagen that describes the research here.


Sources: AAAS/Eurekalert! via University of Copenhagen, Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 18, 2020
Neuroscience
JAN 18, 2020
The Key to Living Longer is REST
  Scientists at Harvard Medical School show new evidence that the key to living longer is to get plenty of sleep.   The researchers were mapping ...
JAN 18, 2020
Clinical & Molecular DX
JAN 18, 2020
Looking into the eyes of MS patients for personalized therapies
Blurred or double vision, and in extreme cases, complete vision loss are amongst the earliest symptoms of multiple sclerosis (MS). In this devastating dise...
JAN 18, 2020
Genetics & Genomics
JAN 18, 2020
Learning More About Changes in Cancer Cell Identity
Cancer cells can change their identity and can take on new functions and characteristics, which is often rooted in epigenetic alterations....
JAN 18, 2020
Neuroscience
JAN 18, 2020
Hiccups Key For Infant Brain Development
Although we know how we hiccup, why has remained a mystery for some time, with researchers suggesting it to be an evolutionary hangover from when our ances...
JAN 18, 2020
Genetics & Genomics
JAN 18, 2020
Linking Genes and Behavior in an Assessment of Personality in Animals
Anyone that's owned dogs knows that they have a personality, and the same is true of mice....
JAN 18, 2020
Genetics & Genomics
JAN 18, 2020
Top Autism Gene Linked to Being Taller and Having a Big Head
People who carry certain mutations in gene CHD8, a gene strongly linked to autism, tend to be taller and have larger heads than the average person. They al...
Loading Comments...