FEB 23, 2019 8:22 AM PST

Antibiotic Resistance Genes can Spread Quickly in Multiple Ways

WRITTEN BY: Carmen Leitch

A team of researchers from the Helmholtz Zentrum München, the University of Campinas and the University of Copenhagen has found that antibiotic resistance genes can be transferred between bacteria quickly, through a variety of mechanisms. These findings have been published in the journal Microbiome, and show that there's more to the rise of antibiotic resistance than we thought.

Piaractus mesopotamicus, a South American species known as pacu, is often raised in aquaculture. / Credit: © Helmholtz Zentrum München

"In the past 70 years, the use of antibiotics in human and veterinary medicine has steadily increased, leading to a dramatic rise in resistant microorganisms," noted Dr. Michael Schloter, professor and head of the Research Unit for Comparative Microbiome Analyses (COMI) at Helmholtz Zentrum München. Unfortunately, many microorganisms are gaining resistance to a range of substances, not just one antibiotic, he added. This has made treating some infectious diseases very challenging. "We, therefore, set out to discover the mechanisms responsible for resistance development," he added.

For this work, Schloter, Gisle Vestergaard of the University of Copenhagen and Helmholtz Zentrum München and colleagues utilized a fish model, Piaractus mesopotamicus. This South American species is known as pacu and is often used in aquaculture. The fish were exposed to the antibiotic florfenicol for 34 days. The researchers collected samples from the fish digestive tract during and after this time, assessing the genetic changes in the gut bacteria of the fish.

"As expected, administration of the antibiotic induced an increase in the genes responsible for resistance to that antibiotic," revealed the lead author of the report, COMI graduate student Johan Sebastian Sáenz Medina. "One example [is] genes for pump proteins, which simply remove the active substance from the bacteria again. However, we were particularly surprised by the different mechanisms that we could detect by which antibiotic resistance genes are spread amongst gut bacteria of the fish. This suggests that the bacteria also exchange resistance through viruses, known as phages, and transposons."

Transposons are genetic sequences that can jump around the genome. Additional metagenomic work confirmed that they can trigger the rapid distribution of resistance genes through the genomes of different organisms. It had been thought that plasmids were primarily responsible for transferring resistance genes.

"The finding that resistance is also extensively transferred between bacteria without the involvement of plasmids is really quite surprising," said Schloter. "Based on this observation, relevant dissemination models should be reviewed and modified. In addition, our data certainly lead us to question whether and to what extent we should continue to use antibiotics in the world's increasing number of aquacultures."


Sources: AAAS/Eurekalert! Via Helmholtz Zentrum München, Microbiome

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 17, 2021
Neuroscience
Genetic Changes in Brain Immune System May Cause Psychosis
MAY 17, 2021
Genetic Changes in Brain Immune System May Cause Psychosis
The exact biological mechanisms behind psychosis, a condition that changes one’s perception of reality and often i ...
JUN 09, 2021
Genetics & Genomics
Going to Bed an Hour Earlier Cuts Depression Risk Significantly
JUN 09, 2021
Going to Bed an Hour Earlier Cuts Depression Risk Significantly
Could it be possible to reduce the risk of developing depression by 23% simply by waking up an hour earlier? That's what ...
JUN 18, 2021
Genetics & Genomics
How DNA Has Told Stories of Human History
JUN 18, 2021
How DNA Has Told Stories of Human History
Archeological digs have told us a lot about human history, but genetic tools have been able to fill in some of the gaps ...
JUN 25, 2021
Genetics & Genomics
Towards More Efficient Plant Engineering with CRISPR-Cas9 Gene Drive
JUN 25, 2021
Towards More Efficient Plant Engineering with CRISPR-Cas9 Gene Drive
Many people in the world don't have access to enough food. And while humans might find ways to adapt to a changing world ...
JUL 05, 2021
Genetics & Genomics
Genetics May Help Us Learn Who is at Risk From a Folate Deficiency
JUL 05, 2021
Genetics May Help Us Learn Who is at Risk From a Folate Deficiency
Folate is necessary for a healthy pregnancy; low folate levels can lead to neural tube defects. A lack of folate, a nutr ...
JUL 21, 2021
Genetics & Genomics
Researchers Detect DNA in Air Samples
JUL 21, 2021
Researchers Detect DNA in Air Samples
Scientists have shown that it's possible to assess what organisms might be living in a particular habitat by collecting ...
Loading Comments...