FEB 23, 2019 8:22 AM PST

Antibiotic Resistance Genes can Spread Quickly in Multiple Ways

WRITTEN BY: Carmen Leitch

A team of researchers from the Helmholtz Zentrum München, the University of Campinas and the University of Copenhagen has found that antibiotic resistance genes can be transferred between bacteria quickly, through a variety of mechanisms. These findings have been published in the journal Microbiome, and show that there's more to the rise of antibiotic resistance than we thought.

Piaractus mesopotamicus, a South American species known as pacu, is often raised in aquaculture. / Credit: © Helmholtz Zentrum München

"In the past 70 years, the use of antibiotics in human and veterinary medicine has steadily increased, leading to a dramatic rise in resistant microorganisms," noted Dr. Michael Schloter, professor and head of the Research Unit for Comparative Microbiome Analyses (COMI) at Helmholtz Zentrum München. Unfortunately, many microorganisms are gaining resistance to a range of substances, not just one antibiotic, he added. This has made treating some infectious diseases very challenging. "We, therefore, set out to discover the mechanisms responsible for resistance development," he added.

For this work, Schloter, Gisle Vestergaard of the University of Copenhagen and Helmholtz Zentrum München and colleagues utilized a fish model, Piaractus mesopotamicus. This South American species is known as pacu and is often used in aquaculture. The fish were exposed to the antibiotic florfenicol for 34 days. The researchers collected samples from the fish digestive tract during and after this time, assessing the genetic changes in the gut bacteria of the fish.

"As expected, administration of the antibiotic induced an increase in the genes responsible for resistance to that antibiotic," revealed the lead author of the report, COMI graduate student Johan Sebastian Sáenz Medina. "One example [is] genes for pump proteins, which simply remove the active substance from the bacteria again. However, we were particularly surprised by the different mechanisms that we could detect by which antibiotic resistance genes are spread amongst gut bacteria of the fish. This suggests that the bacteria also exchange resistance through viruses, known as phages, and transposons."

Transposons are genetic sequences that can jump around the genome. Additional metagenomic work confirmed that they can trigger the rapid distribution of resistance genes through the genomes of different organisms. It had been thought that plasmids were primarily responsible for transferring resistance genes.

"The finding that resistance is also extensively transferred between bacteria without the involvement of plasmids is really quite surprising," said Schloter. "Based on this observation, relevant dissemination models should be reviewed and modified. In addition, our data certainly lead us to question whether and to what extent we should continue to use antibiotics in the world's increasing number of aquacultures."


Sources: AAAS/Eurekalert! Via Helmholtz Zentrum München, Microbiome

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 12, 2022
Genetics & Genomics
Deciphering Longevity with the Genetics of the Immortal Jellyfish
SEP 12, 2022
Deciphering Longevity with the Genetics of the Immortal Jellyfish
Living things have to contend with aging. Except for a few unusual creatures, like Turritopsis dohrnii, which has an ext ...
OCT 20, 2022
Microbiology
Building a Better Beer Through Microbiology
OCT 20, 2022
Building a Better Beer Through Microbiology
Belgium as long been known for its beer, and now, Belgian researchers have used genetic technology to improve the brew.
OCT 18, 2022
Clinical & Molecular DX
New Mitochondrial Disease Identified in Identical Twins
OCT 18, 2022
New Mitochondrial Disease Identified in Identical Twins
A new mitochondrial disease has been identified after a pair of identical twins were showing an unusual symptom. Despite ...
OCT 29, 2022
Coronavirus
Extreme Evolution - WHO Now Tracking Over 300 Omicron Subvariants
OCT 29, 2022
Extreme Evolution - WHO Now Tracking Over 300 Omicron Subvariants
As the pandemic has progressed, different variants of SARS-CoV-2 have arisen. Now Omicron subvariants are proliferating, ...
NOV 02, 2022
Genetics & Genomics
A Mildly Pathogenic Mutation, Inherited Over 800 Years, Traces Back to One Person
NOV 02, 2022
A Mildly Pathogenic Mutation, Inherited Over 800 Years, Traces Back to One Person
Scientists have recently identified a genetic mutation that causes epilepsy, and carried by at least 90 people. These mu ...
DEC 01, 2022
Genetics & Genomics
How the CRISPR Gene Editor Can Activate Protein Scissors
DEC 01, 2022
How the CRISPR Gene Editor Can Activate Protein Scissors
The CRISPR/Cas9 gene editing tool has changed biomedical research, and has even been used in the clinic in a few cases t ...
Loading Comments...