MAR 07, 2019 9:06 AM PST

Some Regenerative Worms Evolved the Ability Relatively Recently

WRITTEN BY: Carmen Leitch

It’s a rare ability, but some species can regrow body parts. While salamanders and sea stars only regrow appendages, the marine ribbon worm can regenerate an entire body from only a sliver of tissue. These traits were thought to trace back to some ancient species, with only some animals retaining their regenerative abilities and others losing them over time. But now research has indicated that relatively recently, at least four types of marine ribbon worms have independently gained the ability to regrow a head after it’s been amputated. The findings have been reported in the Proceedings of the Royal Society B

"This means that when we compare animal groups we cannot assume that similarities in their ability to regenerate are old and reflect shared ancestry," explained study author Alexandra Bely, an associate professor of biology at the University of Maryland. "We need to be more careful when comparing regeneration findings across different groups of animals."

Regeneration is a critical ability; all animals need to be able to repair damage like wounds. But species that appeared long ago like sponges and ctenophores are frequently able to regrow their whole body from a damaged part. As animals became more biologically complex, it was assumed that those dramatic regenerative abilities that had once been passed on were now lost. Understanding how regeneration fits into the tree of life can show how it evolved, and what influenced it. 

Unlike other research that has been performed on animals that lost their regenerative abilities, this study assessed animals that gained the skill, and may help show what it requires to appear. 

For this work, the researchers gathered ribbon worm specimens from 2012 to 2014 in coastal areas of Argentina, the United States, Spain and New Zealand. They also used available information about thirteen other ribbon worm species. After performing regeneration experiments, in which 22 species were bisected and observed, the researchers found that all of them could make themselves whole again by regrowing their back end. Only eight of the species could regrow a head and entire body from the back portion of their body. While four of these species were previously known, four were newly identified. The researchers were actually surprised that most worms weren’t able to regenerate a head.

While it had been assumed that regeneration had been passed down from an ancient, common ancestor, and the ability was slowly lost as species diverged, this work showed that it actually evolved relatively recently.

"The ancestor of this group of worms is inferred to have been unable to regenerate a head, but four separate groups subsequently evolved the ability to do so," Bely said. "One of these origins is inferred to have occurred just ten to fifteen million years ago."

It’s thought that regenerative abilities evolved over 500 million years ago, making ten or fifteen million years a short period in evolutionary history.

"These species that have recently evolved head regeneration will make for excellent models for studying the emergence of new regeneration abilities in animals," Bely said. "We can now ask such questions as what changes in molecular processes led to novel head regeneration ability."


Sources: Phys.org via University of Maryland, Proceedings of the Royal Society B 

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 19, 2020
Genetics & Genomics
JAN 19, 2020
Engineering Mosquitoes to Stop Dengue Virus Transmission
The dengue virus is transmitted by mosquitoes. It is found in over one hundred countries and threatens three billion people with a serious illness....
JAN 30, 2020
Microbiology
JAN 30, 2020
25% of Antibiotic-Resistant Bacteria Can Spread Resistance Directly to Other Microbes
This research also suggests that antibiotics do not increase the rate at which bacteria acquire drug resistance genes....
FEB 05, 2020
Genetics & Genomics
FEB 05, 2020
'Chromosome Shattering' is Common Across Cancer Types
A type of genetic mutation called chromothripsis was discovered a few years ago in chronic lymphocytic leukemia....
FEB 26, 2020
Genetics & Genomics
FEB 26, 2020
Optogenetic Techniques Provide Insight Into ALS
In humans, motor neurons link thoughts with the motion of the body. Now researchers have learned more about how they are impacted by ALS....
FEB 27, 2020
Cell & Molecular Biology
FEB 27, 2020
Caloric Restriction Changes Gene Expression, Reduces Inflammation
New research has added to the evidence that suggests that dietary restriction has health benefits....
MAR 27, 2020
Genetics & Genomics
MAR 27, 2020
Expanding the Genomic Regions That Can Be Targeted With CRISPR
CRISPR gene-editing technology has sparked a revolution in biomedical research and is poised to have far-reaching applications in medicine....
Loading Comments...