MAY 27, 2019 9:39 AM PDT

Watching the Transfer of Drug Resistance in Bacteria

WRITTEN BY: Carmen Leitch

Many organizations and researchers have sounded the alarm about the rise of antibiotic resistance (as explained in the video), and scientists are aiming to learn more about how resistance spreads among bacteria. Now investigators have visualized the transfer of genetic material that enables antibiotic resistance among microbes, and have learned more about how it happens. The findings have been reported in Science.

Bacteria can easily share genetic material when they make direct contact in a process called bacterial conjugation. The stuff being transferred can be beneficial to the recipient microbe, like a gene that confers resistance to a drug, though many kinds of genetic elements can be transferred this way. The researchers used Escherichia coli as a model to learn more about how microbes acquire resistance to tetracycline through bacterial conjugation.

Bacteria carry efflux pumps that can help remove toxins from their cells, and previous work has indicated that tetracycline resistance can involve these pumps. In this study, the researchers used fluorescence to track the movement of DNA that carried an efflux pump gene from a resistant microbe to one that lacked resistance. The fluorescent glow also showed that the pump began to work in only one to two hours after the DNA moved.

DNA is transferred from donor bacteria (green) to recipient bacteria (red), revealed by red localization foci appearing. Rapid expression of newly acquired genes is demonstrated with green fluorescence in the recipient bacteria.

Tetracycline works by stopping the production of new proteins in bacteria, which kills the microbe. While one may expect that the antibiotic would, therefore, stop the bacterial cell from expressing the gene coding for the efflux pump, that was not the case. Instead, the E. coli survived and became resistant. Another factor was, therefore, thought to be at work. 

Further study revealed that another common bacterial efflux pump called AcrAB-TolC could explain these observations. The pump, which is not particularly efficient, can get rid of just enough antibiotic to allow the bacteria to make a few proteins, including one it gets the genetic code for after conjugation.

While this work used E. coli as a model, the findings may hold true for many other bacteria. 

"We could even consider a therapy combining an antibiotic and a molecule able to inhibit this generalist pump. While it is still too soon to envisage the therapeutic application of such an inhibitor, numerous studies are currently being performed in this area given the possibility of reducing antibiotic resistance and preventing its spread to the various bacterial species," concluded Lesterlin.

 

Sources: AAAS/Eureklert! via INSERM, Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 24, 2020
Genetics & Genomics
Towards a Cure for Latent Herpes 1 Infections
AUG 24, 2020
Towards a Cure for Latent Herpes 1 Infections
Herpes simplex virus 1 (HSV-1) causes what's popularly known as cold sores, and is transmitted mostly through oral-t ...
SEP 09, 2020
Microbiology
Changing How We Think of Drug Resistance in Fungi
SEP 09, 2020
Changing How We Think of Drug Resistance in Fungi
It's been estimated that fungal infections cause more than one million deaths worldwide, and many more are affected.
OCT 03, 2020
Genetics & Genomics
Genetic Changes Can Influence Cocaine Addiction
OCT 03, 2020
Genetic Changes Can Influence Cocaine Addiction
There is no treatment for cocaine addiction, which affects millions of people around the world and has a high relapse ra ...
OCT 24, 2020
Immunology
New CRISPR-Based Imaging Tool Is Going to Be HiUGE
OCT 24, 2020
New CRISPR-Based Imaging Tool Is Going to Be HiUGE
A team of researchers at Duke University have developed an imaging technology for tagging structures at a cellular level ...
OCT 24, 2020
Genetics & Genomics
Cord Blood Samples Reveal More About the Genetics of Autism
OCT 24, 2020
Cord Blood Samples Reveal More About the Genetics of Autism
The activity of genes in our genome is controlled by many factors, one of which are chemical tags or structural changes ...
OCT 26, 2020
Genetics & Genomics
Does a 'Mismatch' Between Diet and Biology Cause Poor Health?
OCT 26, 2020
Does a 'Mismatch' Between Diet and Biology Cause Poor Health?
People that eat a 'paleo' diet operate under the idea that we should be eating more like our ancestors, and that metabol ...
Loading Comments...