JUN 28, 2019 6:26 AM PDT

A Sea Slug and Algae Rely on a Bacterial Weapons Factory

WRITTEN BY: Carmen Leitch

The inch-long sea slug Elysia rufescens eats algae for sustenance, but it gets an added benefit in the form of toxins within the algae, which can help the slug defend itself. Researchers have found that the toxins are made by bacteria that live in the algae - a newly-identified species that evolved to live in this one place; they cannot survive anywhere else. The bacteria spend at least twenty percent of their energy to create the toxic molecules the slug and algae depend on. This three-way symbiotic relationship has been reported in Science.

"It's a complicated system and a very unique relationship among these three organisms," said the senior author of the report Mohamed Donia, assistant professor of molecular biology at Princeton University. "The implications are big for our understanding of how bacteria, plants, and animals form mechanistic dependencies, where biologically active molecules transcend the original producer and end up reaching and benefitting a network of interacting partners."

The scientists, working at Princeton University and the University of Maryland Center for Environmental Science's Institute of Marine and Environmental Technology used powerful genomic tools to understand the various roles the members of this network are playing. The genetic data from the slugs, algae, and the bacteria that live in them was assessed using computer algorithms that determined which genes belonged to which organism. This information enabled them to identify the bacteria and the toxins they were making.

The bacteria is a species the researchers named Candidatus Endobryopsis kahalalidefaciens, which makes around fifteen different toxins called kahalalides. These natural chemicals are very different from one another, but they can deter fish and other animals. The bacterial genome won’t allow them to live on their own; they’ve taken on many genes to produce these toxins for the algae. The scientists saw them as a type of factory that takes in amino acids and releases these chemicals in turn.

The E. rufescens slug can tolerate the toxins and stores them in a concentrated form like an arsenal. The researchers determined that the slug digests the bacteria and retain the toxic chemicals.

This is not the first symbiotic relationship like this found by the researchers. They’ve also identified a symbiotic bacteria that live in marine sponges and generates toxins that help shield the sponges from predators. Donia said that these types of bacterial symbionts are turning out to be common in the marine environment.

"The weirdest thing is that the sponge has actually evolved a specialized type of cells, which we called 'chemobacteriocytes,' dedicated entirely to housing and maintaining a culture of this bacterium," Donia explained. "This is very strange, given the small number of specialized sponge cells in general. Again, the bacterium cannot produce the substrates and cannot live on its own."

Sources: AAAS/Eurekalert! via Princeton University, Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 25, 2020
Genetics & Genomics
How Genetics Can Inform Our Understanding of ADHD
SEP 25, 2020
How Genetics Can Inform Our Understanding of ADHD
Scientists have discovered that African-Americans and people of European ancestry may have different genetic causes of a ...
OCT 22, 2020
Cell & Molecular Biology
How a Gene Variant Raises the Risk of Multiple Sclerosis
OCT 22, 2020
How a Gene Variant Raises the Risk of Multiple Sclerosis
Now that sequencing the whole human genome is easier, faster, and cheaper than it used to be, scientists have been able ...
NOV 03, 2020
Cell & Molecular Biology
The Connections Between Toxins, Genes, and Disease
NOV 03, 2020
The Connections Between Toxins, Genes, and Disease
We are exposed to a vast array of chemicals every day. Many are harmless or even important, like the air we breathe, wat ...
NOV 07, 2020
Genetics & Genomics
How the Suction Cups on Octopus Arms Detect Their Surroundings
NOV 07, 2020
How the Suction Cups on Octopus Arms Detect Their Surroundings
Scientists have taken a close look at the physiology of the octopus, creatures that are ancient and unique. Their arms c ...
NOV 09, 2020
Genetics & Genomics
Potential Problems with Liquid Biopsies
NOV 09, 2020
Potential Problems with Liquid Biopsies
Liquid biopsies are tests that look for biomarkers in the blood, which can help inform the treatment of cancer. The tool ...
NOV 10, 2020
Immunology
Genetic Profiling Reveals How Ebola Puts Immune Cells in a Chokehold
NOV 10, 2020
Genetic Profiling Reveals How Ebola Puts Immune Cells in a Chokehold
In the middle of 2020, yet another deadly Ebola outbreak was reported in the Democratic Republic of the Congo - the 11th ...
Loading Comments...