JUL 12, 2019 8:30 AM PDT

The Gene that Helps Plants Fight Climate Change

WRITTEN BY: Annie Lennon

Large underground networks of roots forage the earth for nutrients and water. Although we have been familiar with this process for a long time, the precise mechanisms which govern how it happens have remained largely unknown. Researchers at the Salk Institute however, have begun to unravel this mystery, having just discovered a gene that determines how deep or shallow roots grow in soil. 

In their work, they focused on studying gene variants present in thale cress (Arabidopsis thaliana) used to regulate auxin, a hormone responsible for much of root system architecture. Although known to influence every aspect of plant growth, its effects on root system architecture were mostly unknown. 

During the research, as the roots of the plants were very small, and thus hardly visible, the researchers sliced them in half to better observe, measure and analyze them. In doing so, they found that one gene, EXOCYST70A3, directly regulates root system architecture by controlling auxin pathways without interfering with other processes. 

They found that the gene does this by influencing the distribution of PIN4, a protein known to affect auxin transport. They also found that making alterations to the EXOCYST70A3 gene caused the root system to change orientation and for roots to grow deeper into the soil. 

One of the benefits of this finding is that researchers are now closer to understanding how to grow plants with deeper, and more robust root systems that are capable of storing more carbon underground, thus reducing the overall CO2 in the atmosphere. Another benefit of this research is that it may be able to help scientists understand how plants adapt to seasonal variances in rainfall, and thus how to adapt plants to changing climates. 

One of the researchers, Associate Professor Wolfgang Busch said, “We hope to use this knowledge of the auxin pathway as a way to uncover more components that are related to these genes and their effect on root system architecture...This will help us create better, more adaptable crop plants, such as soybean and corn, that farmers can grow to produce more food for a growing world population." 

 

Sources: 


Science Daily

Salk Institute 

About the Author
  • Science writer with a keen interest in behavioral biology, consciousness medicine and technology. Her current focus is how the interplay of these fields can create meaningful interactions, products and environments.
You May Also Like
MAY 13, 2021
Immunology
Tumors Hide From the Immune System by Masquerading as Baby Cells
MAY 13, 2021
Tumors Hide From the Immune System by Masquerading as Baby Cells
The immune system is programmed to recognize foreign bodies as potentially dangerous, promptly removing them before the ...
MAY 13, 2021
Genetics & Genomics
Explore Ways to Enhance Biomarker Discovery Research
MAY 13, 2021
Explore Ways to Enhance Biomarker Discovery Research
Enhance your existing research or discover new methods with a suite of NGS tools and techniques to find and characterize ...
MAY 13, 2021
Genetics & Genomics
The Unique Caecilians of São Tomé Island
MAY 13, 2021
The Unique Caecilians of São Tomé Island
There are many islands that have unique flora and fauna, like these limbless creatures (Photo © Andrew Stanbridge) of Sã ...
MAY 17, 2021
Microbiology
Bacteria Can Time Their DNA Replications by the Circadian Clock
MAY 17, 2021
Bacteria Can Time Their DNA Replications by the Circadian Clock
The circadian rhythm is the body's clock, and it influences physiology at the cellular level; it can help animals, inclu ...
MAY 23, 2021
Plants & Animals
Where Did the Monkeys Near Fort Lauderdale Airport Come From?
MAY 23, 2021
Where Did the Monkeys Near Fort Lauderdale Airport Come From?
This image by Aaron Mencia shows two vervet monkeys in a mangrove forest near the Fort Lauderdale-Hollywood Internationa ...
JUN 05, 2021
Coronavirus
Newly-Named Coronavirus Variant Causes Concern
JUN 05, 2021
Newly-Named Coronavirus Variant Causes Concern
WHO has decided to create a new naming system for coronavirus variants for several reasons. The names will now be based ...
Loading Comments...