DEC 25, 2019 03:50 PM PST

Perfect for Urban Farming: Gene-Edited Tomatoes that Grow like Grapes

WRITTEN BY: Annie Lennon

A team of researchers from New York’s Cold Spring Harbor Laboratory have created a new strain of tomatoes that can grow from bushes rather than vines. Capable of growing into grape-like bouquets, the researchers say that their new breed of tomato is ideal for growing in urban settings, unlike existing varieties that are known to struggle. 

Zachary Lippman, involved in the study, said, “All flowering plants have a universal system of genes that encode hormones that tell the plant to stop making leaves and start making flowers...For a number of years now, we’ve known that we could modify specific genes to control flowering and makes plants more compact."

Plants have two cycles of growth. The first is vegetation growth, where they sprout leaves and elongate theur stems, thus growing in size. The second is flowering- where they produce both fruits and seeds. Although agricultural breeders typically focus on enhancing the vegetative growth aspect of plants, Lippman and his team decided to go further- not just enhancing this aspect, but also the plants’ flowering cycles too. 

Using CRISPR/Cas9 gene-editing, they made edits to three genes in the tomato plant involved with the flowering phase. The first two genes were already known to influence rapid flowering and growth of fruits. The third however, only discovered during the study, controls the length of the plant’s stem. By effectively switching these three genes off, the researchers were able to create grape-like bundles of cherry tomatoes that, according to Lippman, don’t just look appetizing, but “taste good” too. 

More than this, the genetic modifications also meant that the tomatoes were able to ripen ready for harvest within just 40 days of growth. The researchers said that such a fast growth cycle, coupled with urban farming conditions, leaves potential for more harvests per year, and thus more food, even if spaces used are small.  

In particular, Lippman and his team hope that such innovations will be able to reduce transport distances for crops, and thus, benefit the environment. Further applications however include food cultivation during intergalactic travel, as well as eventually employing similar strategies on other plants, including kiwis and cucumbers. 

 

Sources: Nature, Smithsonian Magazine and Interesting Engineering 

 

About the Author
  • Annie graduated from University College London and began traveling the world. She is currently a writer with keen interests in genetics, psychology and neuroscience; her current focus on the interplay between these fields to understand how to create meaningful interactions and environments.
You May Also Like
JAN 17, 2020
Genetics & Genomics
JAN 17, 2020
Using Genetics to Study the History of Rome
While archaeologists and historians have been studying Ancient Rome for many years, there are still things we don't know....
JAN 17, 2020
Clinical & Molecular DX
JAN 17, 2020
Looking into the eyes of MS patients for personalized therapies
Blurred or double vision, and in extreme cases, complete vision loss are amongst the earliest symptoms of multiple sclerosis (MS). In this devastating dise...
JAN 17, 2020
Microbiology
JAN 17, 2020
Flesh-Eating Infection Turns Deadly When Two Microbes Are to Blame
Some illnesses can happen because a person is infected with more than one microbial pathogen, and these pathogens can interact....
JAN 17, 2020
Genetics & Genomics
JAN 17, 2020
22 Genes Discovered that Predict Skin Cancer from Sun Exposure
Australia has the highest rate of skin cancer in the world, with around 49 cases per 100,000 people. Now, researchers at the QIMR Berghofer Medical Researc...
JAN 17, 2020
Genetics & Genomics
JAN 17, 2020
The Sequence of the Devil Worm Genome is Revealed
The 'Devil Worm' was found in an aquifer and is the deepest animal that's been found living beneath the surface of the Earth....
JAN 17, 2020
Cell & Molecular Biology
JAN 17, 2020
A New Understanding of How Scars Form
Researchers have gained new insight into how the body scars, which can help scientists prevent pathological fibrosis, and initiate scarless healing....
Loading Comments...