FEB 23, 2020 10:07 AM PST

Revealing More About the Genetic Mechanisms Underlying Down Syndrome

WRITTEN BY: Carmen Leitch

Down syndrome impacts around 6,000 live births in the United States every year. There are three types of the disorder. Around 95 percent of affected individuals have the type called trisomy 21, and have an extra copy of chromosome 21. For children, DS is one of the primary causes of intellectual disability, and about half of those affected also have congenital heart defects. Researchers have now learned more about the mechanisms underlying the disorder. The findings, which focused on a gene that is expressed at higher than normal levels in the brains of DS-affected fetuses, have been reported in Current Biology.

The billions of neurons in our brain are connected at junctions called synapses. Neurons signal to one another over those junctions with molecules called neurotransmitters, and the connections between them can get stronger or weaker in a phenomenon called synaptic plasticity. It has been thought that synaptic plasticity is an essential part of learning and memory.

"There are two kinds of synaptic plasticity: long-term potentiation, which strengthens synapses and improves interaction between neurons, and long-term depression, which weakens synapses," said the leader of the research, Professor Jannic Boehm of Université de Montréal and a researcher at CHU Sainte-Justine.

"We already knew that synaptic plasticity is influenced by certain proteins," added the first author of the report, Anthony Dudilot. "For example, calcineurin is inhibited when long-term potentiation is induced, but it's activated when long-term depression begins. But the molecular mechanism underlying calcineurin regulation was less clear."

The gene that is overexpressed in fetuses with Down syndrome is called RCAN1. The researchers learned that there are various molecular pathways influencing synaptic plasticity, some triggering potentiation (enhancing synaptic transmission), another depression (reducing synaptic transmission), and those are brought together by RCAN1. RCAN1 is acting as both an inhibitor and a facilitator, and is a kind of switch that works to control synaptic plasticity and therefore, learning and memory as well.

The RCAN1 gene may be influencing how Down syndrome is manifested. The researchers found that RCAN1 can also regulate the activity of calcineurin; it can both inhibit and facilitate calcineurin as well. RCAN1 is acting as an inhibitor or facilitator based on which site on the RCAN1 protein is phosphorylated; it's phosphorylated by an enzyme called glycogen synthase kinase 3 beta (GSK-3β).

"This is the first time that the molecular mechanism for calcineurin regulation in bidirectional synaptic plasticity has been determined," said Boehm. "This breakthrough explains how overexpression of the RCAN1 gene could cause intellectual disabilities in individuals with Down syndrome. It also opens up the possibility of developing innovative treatments for affected patients."

Sources: AAAS/Eurekalert! via University of Montreal, Current Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 02, 2020
Drug Discovery & Development
JAN 02, 2020
FDA Approves Ovarian Cancer Drug to Treat Pancreatic Cancer
In 2019, an estimated 46,000 Americans died from pancreatic cancer. Now, the Food and Drug Administration (FDA) has approved Lynparza, an ovarian cancer dr...
JAN 19, 2020
Genetics & Genomics
JAN 19, 2020
Engineering Mosquitoes to Stop Dengue Virus Transmission
The dengue virus is transmitted by mosquitoes. It is found in over one hundred countries and threatens three billion people with a serious illness....
JAN 21, 2020
Cancer
JAN 21, 2020
A gene for leukemia triggers the growth of stem blood cells
New research from the University of Colorado Cancer Center has identified a way to make hematopoietic stem cells from a gene that causes a type of leukemia...
JAN 30, 2020
Microbiology
JAN 30, 2020
25% of Antibiotic-Resistant Bacteria Can Spread Resistance Directly to Other Microbes
This research also suggests that antibiotics do not increase the rate at which bacteria acquire drug resistance genes....
FEB 17, 2020
Microbiology
FEB 17, 2020
Giant Viruses Blur the Line Between Life and Non-Life
Bacteriophages, also known as phages, are more complex than many viruses that we know of, and often carry large genomes....
MAR 07, 2020
Genetics & Genomics
MAR 07, 2020
Learning Why Men Tend to Die Younger
Data has shown conclusively that even though women tend to have poorer health than men during their adult lives, they live longer than men....
Loading Comments...