MAY 06, 2020 11:58 AM PDT

Advances in Genome Sequencing Technology

WRITTEN BY: Carmen Leitch

The human genome project, which aimed to sequence the human genome in its entirety, was declared complete in 2003, and was celebrated as a major milestone for science. Genetic sequencing tools had gotten more sophisticated, efficient, and inexpensive, which helped make the achievement possible. But behind the scenes, there were some problems. The human genome contains many repetitive regions that don't code for genes and can be extremely challenging to sequence, so there were some gaps. Most of the work was also performed using a genomic sample from one individual, so it was an incomplete picture. The 1000 Genomes Project, completed in 2012, sequenced 1,092 genomes so that we would learn more about variation in the human genome. But that is still an underrepresentation and the data may not be included in reference sequences, potentially because of quality issues.

The nine-day assembly process, broken down by length of time for each step. / Credit: UC Santa Cruz Genomics Institute

Last year, the National Institute of Health announced an initiative to address these problems. Called the “human pangenome reference,” the project aims to sequence the entire genomes of 350 individuals.

"One human genome cannot represent all of humanity. The human pangenome reference will be a key step forward for biomedical research and personalized medicine. Not only will we have 350 genomes representing human diversity, they will be vastly higher quality than previous genome sequences," said David Haussler, professor of biomolecular engineering at UC Santa Cruz and director of the UC Santa Cruz Genomics Institute.

Nobel Laureate Frederick Sanger and colleagues created Sanger sequencing for reading a genetic sequence in 1977. After a DNA sequence has been amplified, each base is labeled and then read from one end. In 1995, pairwise end sequencing was shown to be useful for sequencing whole genomes, and the technology was used to sequence the human genome. A library of fragments is prepared from a genome, and the fragments are read. Computational tools assemble the fragments into longer sequences. Nanopore sequencing, which pushes a molecule through a really tiny pore, detecting the base as it moves through, was created as one of the 'third-generation' sequencing technologies.

With an intensive effort, including 150,000 hours of commuting time, researchers at UC Santa Cruz researchers were able to use nanopore technology for long-read human genome sequencing. Around a year later, the cost was brought down significantly, and the results could were then obtained within about a week. "We sequenced eleven human genomes in nine days, which was unprecedented at the time," said UC Santa Cruz Research Scientist Miten Jain.

It's now been taken even further; an algorithm has been designed that can use long-read sequencing data to assemble as complete human genome in around six hours, and four about $70.

The researchers said they hope their assembler will increase the pace of genomics research and open opportunities. This includes enabling pangenome research to represent the true scale of human diversity, a decidedly more practical pursuit.

"Our new assembler was designed to be cheap and quick, with the goal to be on the cloud," said UC Santa Cruz's Benedict Paten. "It gives us the power to scale nanopore sequencing. Now, I'm confident that we'll be easily assembling hundreds of de novo genomes in the next couple of years."

Sources: AAAS/Eurekalert! via University of California - Santa Cruz, Nature Biotechnology

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 24, 2022
Plants & Animals
New research strengthens understanding of how animals see, and in what colors
JUN 24, 2022
New research strengthens understanding of how animals see, and in what colors
We’ve all what animals see. Do they see the same way humans do in terms of colors, or is the vision of each animal ...
JUL 19, 2022
Genetics & Genomics
There are Genetic Links Between Gut Disorders & Alzheimer's Disease
JUL 19, 2022
There are Genetic Links Between Gut Disorders & Alzheimer's Disease
New research has found that there is a genetic connection between Alzheimer's disease and gastrointestinal disorders lik ...
AUG 04, 2022
Cardiology
Lifestyle Can Offset Genetic Stroke Risk
AUG 04, 2022
Lifestyle Can Offset Genetic Stroke Risk
Those who are genetically susceptible to stroke can lower their risk by as much at 43% through lifestyle choices.
AUG 22, 2022
Cell & Molecular Biology
DNA Binding Proteins Both Search & Bind Rapidly
AUG 22, 2022
DNA Binding Proteins Both Search & Bind Rapidly
Many different proteins can bind DNA, and they perform a variety of critical functions in cells. DNA-binding proteins of ...
AUG 29, 2022
Health & Medicine
US-Funded Research to be Open Access by 2026 Under New Federal Guidance
AUG 29, 2022
US-Funded Research to be Open Access by 2026 Under New Federal Guidance
If you have ever done research for school or work, or simply been curious about a scientific finding and wanted to read ...
SEP 07, 2022
Cell & Molecular Biology
Sequencing Living Cells, Individually, Without Killing Them
SEP 07, 2022
Sequencing Living Cells, Individually, Without Killing Them
When genes in a cell are active, they are transcribed into messenger RNA (mRNA) molecules. So researchers can take a sna ...
Loading Comments...