MAY 04, 2021 9:08 AM PDT

The Weird World of Flatfish

WRITTEN BY: Carmen Leitch

Many of us, including scientists, have wondered how fish like sole and flounder ended up with two eyes on one side of their heads; flatfish are probably the most asymmetric vertebrates on the planet. Rice University biologist Kory Evans, Ph.D. has been studying the evolution of these unusual animals., and is the corresponding author of a new report on flatfish evolution published in the Proceedings of the National Academy of Sciences (PNAS).

Image credit: Pixabay

"Flatfishes are some of the weirdest vertebrates on the planet, and they got weird very, very fast by changing multiple traits at once over a short period of time," said Evans, an assistant professor of biosciences at Rice. He stressed the strangeness of flatfish compared to other species.

"Imagine any other animal; like, say you're out walking and you see a squirrel, and one eye is here and the other is [on the same side]," he said. "That squirrel is having a bad time. And there are 800 species of these fish that just do that."

The asymmetry makes them wildly different from even their closest relatives. But, Evans noted that flatfish started out as normal-looking, symmetrical fish. Their current appearance or morphology began to emerge about 65 million years ago. Their changes were completed about 3 million years ago. "We got all that novel colonization of morphospace in 3 million years' time," Evans said. "And look how much time has passed since then. So there's a really brief and short period of time when they evolved all these new forms and all these crazy species."

In this work, Evans' team determined that genetic traits that were tightly integrated created a kind of evolutionary cascade. "Integration is where there's a high degree of correlation between traits, such that if you change one trait, another trait will be changed as well," Evans explained. "At macroevolutionary timescales, this gets really interesting, because traits then begin to co-evolve with one another. So if you change one trait, you might end up changing several others."

Biological traits may be integrated because similar networks of genetic interactions are influencing or controlling their development.

"If the signaling networks expand to encompass more and more traits, then you can theoretically smear changes all across an entire organism using the same signaling network, and you can change really fast," he said. "It's like pressing one button and flipping the whole animal all at once."

The researchers built a phylogenetic tree, illustrating flatfish evolution by comparing the genomes of various species. They also utilized CT scans to study flatfish skulls and applied mathematical tools that could identify small changes across 65 million years of flatfishes and their relatives.

"We found that flatfishes were way more integrated than non-flat fishes, and what this means is that the evolution of asymmetry for flatfishes ended up being an integrated process, basically, involving changes all across the skull," Evans said. "As the eye migrated, a bunch of other things changed as well. And it became additive. So as the flatfish skull got more and more integrated, more things began to change, per unit time, than a generation before."

Biologically speaking, there are other paths to flatness, Evans noted. "Other fishes that are flat did not do this, like stingrays," he said. "They just went flat like a pancake. But their eyes aren't both on the same side. The remora (aka suckerfish) are also a flat-looking fish, and they didn't do that."

Since evolution is thought to select for advantageous traits, has asymmetry helped these fish? And if so, how? That's still an unknown.

"I'm not gonna lie," Evans said. "I don't really know if there's an advantage. I think they did it because they could."

Sources: AAAS/Eurekalert! via Rice University, PNAS

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 07, 2022
Cell & Molecular Biology
Sequencing Living Cells, Individually, Without Killing Them
SEP 07, 2022
Sequencing Living Cells, Individually, Without Killing Them
When genes in a cell are active, they are transcribed into messenger RNA (mRNA) molecules. So researchers can take a sna ...
SEP 16, 2022
Genetics & Genomics
Grad Student Highlights: Shannon Barry (Florida Institute of Technology)
SEP 16, 2022
Grad Student Highlights: Shannon Barry (Florida Institute of Technology)
This interview series is focused on the graduate student experience across all STEM fields that allows them to get their ...
SEP 26, 2022
Genetics & Genomics
Thousand-Year-Old Poop Teaches us About an Ancient Parasite
SEP 26, 2022
Thousand-Year-Old Poop Teaches us About an Ancient Parasite
Parasitic whipworm eggs have been isolated from fossilized human fecal samples that were estimated to be over 7,000 year ...
OCT 18, 2022
Genetics & Genomics
Mitochondrial DNA Can Move to the Genome to Trigger Human Evolution
OCT 18, 2022
Mitochondrial DNA Can Move to the Genome to Trigger Human Evolution
Mitochondria are often called the powerhouse of the cell, and these organelles are well-known for their energy-generatin ...
OCT 21, 2022
Coronavirus
Recognizing the Importance of SARS-CoV-2 'Accessory' Genes
OCT 21, 2022
Recognizing the Importance of SARS-CoV-2 'Accessory' Genes
The genome of the virus that causes COVID-19, SARS-CoV-2, is very small. But it encodes for more than just the spike pro ...
NOV 04, 2022
Immunology
From Fleas to Natural Selection: The Black Plague & Modern Immunology
NOV 04, 2022
From Fleas to Natural Selection: The Black Plague & Modern Immunology
Acknowledgments of our many physiological changes since the evolution of modern humans have been studied profusely, espe ...
Loading Comments...